The chiral magnetic effect and chiral symmetry breaking in SU(3) quenched lattice gauge theory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-04

AUTHORS

V. V. Braguta, P. V. Buividovich, T. Kalaydzhyan, S. V. Kuznetsov, M. I. Polikarpov

ABSTRACT

We study some properties of the non-Abelian vacuum induced by strong external magnetic field. We perform calculations in the quenched SU(3) lattice gauge theory with tadpole-improved Lüscher-Weisz action and chirally invariant lattice Dirac operator. The following results are obtained: The chiral symmetry breaking is enhanced by the magnetic field. The chiral condensate depends on the strength of the applied field as a power function with exponent ν = 1.6 ± 0.2. There is a paramagnetic polarization of the vacuum. The corresponding susceptibility and other magnetic properties are calculated and compared with the theoretical estimations. There are nonzero local fluctuations of the chirality and electromagnetic current, which grow with the magnetic field strength. These fluctuations can be a manifestation of the Chiral Magnetic Effect. More... »

PAGES

488-492

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063778812030052

DOI

http://dx.doi.org/10.1134/s1063778812030052

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028886379


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for High Energy Physics", 
          "id": "https://www.grid.ac/institutes/grid.424823.b", 
          "name": [
            "Institute for High Energy Physics, Protvino, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braguta", 
        "givenName": "V. V.", 
        "id": "sg:person.014165355111.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014165355111.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics", 
          "id": "https://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Institute for Theoretical and Experimental Physics, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buividovich", 
        "givenName": "P. V.", 
        "id": "sg:person.01160762673.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160762673.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics", 
          "id": "https://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Institute for Theoretical and Experimental Physics, Moscow, Russia", 
            "Deutsches Elektronen-SynchrotronDESY, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalaydzhyan", 
        "givenName": "T.", 
        "id": "sg:person.013226442041.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013226442041.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics", 
          "id": "https://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Institute for Theoretical and Experimental Physics, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuznetsov", 
        "givenName": "S. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics", 
          "id": "https://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Institute for Theoretical and Experimental Physics, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Polikarpov", 
        "givenName": "M. I.", 
        "id": "sg:person.014215752171.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014215752171.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01206178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001346841", 
          "https://doi.org/10.1007/bf01206178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.074033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001879914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.074033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001879914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/07/116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007084720", 
          "https://doi.org/10.1088/1126-6708/2008/07/116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(91)90051-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007506432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(91)90051-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007506432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.64.034512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015174592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.64.034512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015174592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysa.2008.02.298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016152607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2009.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018623841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.81.036007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018637347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.81.036007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018637347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(80)90255-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026742947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(80)90255-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026742947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(97)01368-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027235951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.80.054503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033887471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.80.054503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033887471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90364-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036866651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90364-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036866651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2003.07.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038154458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2003.07.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038154458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(83)90676-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038164058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(83)90676-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038164058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2009.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045717540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(97)00441-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046693494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.132001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047039152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.132001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047039152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.072002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048001283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.072002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048001283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.39.3478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060696698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.39.3478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060696698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217732392000860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062918611"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04", 
    "datePublishedReg": "2012-04-01", 
    "description": "We study some properties of the non-Abelian vacuum induced by strong external magnetic field. We perform calculations in the quenched SU(3) lattice gauge theory with tadpole-improved L\u00fcscher-Weisz action and chirally invariant lattice Dirac operator. The following results are obtained: The chiral symmetry breaking is enhanced by the magnetic field. The chiral condensate depends on the strength of the applied field as a power function with exponent \u03bd = 1.6 \u00b1 0.2. There is a paramagnetic polarization of the vacuum. The corresponding susceptibility and other magnetic properties are calculated and compared with the theoretical estimations. There are nonzero local fluctuations of the chirality and electromagnetic current, which grow with the magnetic field strength. These fluctuations can be a manifestation of the Chiral Magnetic Effect.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063778812030052", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136336", 
        "issn": [
          "1063-7788", 
          "1562-692X"
        ], 
        "name": "Physics of Atomic Nuclei", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "75"
      }
    ], 
    "name": "The chiral magnetic effect and chiral symmetry breaking in SU(3) quenched lattice gauge theory", 
    "pagination": "488-492", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "899ba21bd5733f8fadd3dba219d137e89570e0603c58284028be219f5cf4d815"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063778812030052"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028886379"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063778812030052", 
      "https://app.dimensions.ai/details/publication/pub.1028886379"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063778812030052"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063778812030052'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063778812030052'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063778812030052'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063778812030052'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063778812030052 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3ed45646a4844f1e91e002f60d942bfa
4 schema:citation sg:pub.10.1007/bf01206178
5 sg:pub.10.1088/1126-6708/2008/07/116
6 https://doi.org/10.1016/0370-2693(83)90676-7
7 https://doi.org/10.1016/0370-2693(91)90051-q
8 https://doi.org/10.1016/0550-3213(80)90255-2
9 https://doi.org/10.1016/0550-3213(84)90364-x
10 https://doi.org/10.1016/j.nuclphysa.2008.02.298
11 https://doi.org/10.1016/j.nuclphysb.2009.10.008
12 https://doi.org/10.1016/j.physletb.2003.07.038
13 https://doi.org/10.1016/j.physletb.2009.11.017
14 https://doi.org/10.1016/s0370-2693(97)00441-3
15 https://doi.org/10.1016/s0370-2693(97)01368-3
16 https://doi.org/10.1103/physrevd.39.3478
17 https://doi.org/10.1103/physrevd.64.034512
18 https://doi.org/10.1103/physrevd.78.074033
19 https://doi.org/10.1103/physrevd.80.054503
20 https://doi.org/10.1103/physrevd.81.036007
21 https://doi.org/10.1103/physrevlett.103.072002
22 https://doi.org/10.1103/physrevlett.105.132001
23 https://doi.org/10.1142/s0217732392000860
24 schema:datePublished 2012-04
25 schema:datePublishedReg 2012-04-01
26 schema:description We study some properties of the non-Abelian vacuum induced by strong external magnetic field. We perform calculations in the quenched SU(3) lattice gauge theory with tadpole-improved Lüscher-Weisz action and chirally invariant lattice Dirac operator. The following results are obtained: The chiral symmetry breaking is enhanced by the magnetic field. The chiral condensate depends on the strength of the applied field as a power function with exponent ν = 1.6 ± 0.2. There is a paramagnetic polarization of the vacuum. The corresponding susceptibility and other magnetic properties are calculated and compared with the theoretical estimations. There are nonzero local fluctuations of the chirality and electromagnetic current, which grow with the magnetic field strength. These fluctuations can be a manifestation of the Chiral Magnetic Effect.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N2d7a16668e2747dca2f7bef52d40ef21
31 Ne759f3af30314e52b27b358ac7dfb975
32 sg:journal.1136336
33 schema:name The chiral magnetic effect and chiral symmetry breaking in SU(3) quenched lattice gauge theory
34 schema:pagination 488-492
35 schema:productId N4f91d55b4ae04639bb874ff33c3eb2a5
36 N5904ad992cc94be7861c2157c4836e3f
37 Nb7aaf359612448ae99d6bb22185b1b3c
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028886379
39 https://doi.org/10.1134/s1063778812030052
40 schema:sdDatePublished 2019-04-10T19:07
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nc7ec251a7b474da682263b8fe2337da8
43 schema:url http://link.springer.com/10.1134%2FS1063778812030052
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N083db66a47084e22a86997ac104e14cf rdf:first N433858cbc5b94d0c8ee5edb703cd9ea1
48 rdf:rest N53432f82daa94935a71abea0200b8459
49 N27a41b10d6ea4c5baf8825639fb4823a rdf:first sg:person.01160762673.00
50 rdf:rest Nfe7d3820a28045a2b1d5a751183aeab7
51 N2d7a16668e2747dca2f7bef52d40ef21 schema:volumeNumber 75
52 rdf:type schema:PublicationVolume
53 N3ed45646a4844f1e91e002f60d942bfa rdf:first sg:person.014165355111.12
54 rdf:rest N27a41b10d6ea4c5baf8825639fb4823a
55 N433858cbc5b94d0c8ee5edb703cd9ea1 schema:affiliation https://www.grid.ac/institutes/grid.21626.31
56 schema:familyName Kuznetsov
57 schema:givenName S. V.
58 rdf:type schema:Person
59 N4f91d55b4ae04639bb874ff33c3eb2a5 schema:name dimensions_id
60 schema:value pub.1028886379
61 rdf:type schema:PropertyValue
62 N53432f82daa94935a71abea0200b8459 rdf:first sg:person.014215752171.59
63 rdf:rest rdf:nil
64 N5904ad992cc94be7861c2157c4836e3f schema:name doi
65 schema:value 10.1134/s1063778812030052
66 rdf:type schema:PropertyValue
67 Nb7aaf359612448ae99d6bb22185b1b3c schema:name readcube_id
68 schema:value 899ba21bd5733f8fadd3dba219d137e89570e0603c58284028be219f5cf4d815
69 rdf:type schema:PropertyValue
70 Nc7ec251a7b474da682263b8fe2337da8 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Ne759f3af30314e52b27b358ac7dfb975 schema:issueNumber 4
73 rdf:type schema:PublicationIssue
74 Nfe7d3820a28045a2b1d5a751183aeab7 rdf:first sg:person.013226442041.73
75 rdf:rest N083db66a47084e22a86997ac104e14cf
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
80 schema:name Pure Mathematics
81 rdf:type schema:DefinedTerm
82 sg:journal.1136336 schema:issn 1063-7788
83 1562-692X
84 schema:name Physics of Atomic Nuclei
85 rdf:type schema:Periodical
86 sg:person.01160762673.00 schema:affiliation https://www.grid.ac/institutes/grid.21626.31
87 schema:familyName Buividovich
88 schema:givenName P. V.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160762673.00
90 rdf:type schema:Person
91 sg:person.013226442041.73 schema:affiliation https://www.grid.ac/institutes/grid.21626.31
92 schema:familyName Kalaydzhyan
93 schema:givenName T.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013226442041.73
95 rdf:type schema:Person
96 sg:person.014165355111.12 schema:affiliation https://www.grid.ac/institutes/grid.424823.b
97 schema:familyName Braguta
98 schema:givenName V. V.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014165355111.12
100 rdf:type schema:Person
101 sg:person.014215752171.59 schema:affiliation https://www.grid.ac/institutes/grid.21626.31
102 schema:familyName Polikarpov
103 schema:givenName M. I.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014215752171.59
105 rdf:type schema:Person
106 sg:pub.10.1007/bf01206178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001346841
107 https://doi.org/10.1007/bf01206178
108 rdf:type schema:CreativeWork
109 sg:pub.10.1088/1126-6708/2008/07/116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007084720
110 https://doi.org/10.1088/1126-6708/2008/07/116
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0370-2693(83)90676-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038164058
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0370-2693(91)90051-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1007506432
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0550-3213(80)90255-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026742947
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0550-3213(84)90364-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036866651
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.nuclphysa.2008.02.298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016152607
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.nuclphysb.2009.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018623841
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.physletb.2003.07.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038154458
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.physletb.2009.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045717540
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0370-2693(97)00441-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046693494
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0370-2693(97)01368-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027235951
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevd.39.3478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060696698
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevd.64.034512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015174592
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevd.78.074033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001879914
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevd.80.054503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033887471
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevd.81.036007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018637347
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.103.072002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048001283
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.105.132001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047039152
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1142/s0217732392000860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062918611
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.21626.31 schema:alternateName Institute for Theoretical and Experimental Physics
149 schema:name Deutsches Elektronen-SynchrotronDESY, Hamburg, Germany
150 Institute for Theoretical and Experimental Physics, Moscow, Russia
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.424823.b schema:alternateName Institute for High Energy Physics
153 schema:name Institute for High Energy Physics, Protvino, Russia
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...