Ontology type: schema:ScholarlyArticle Open Access: True
2010-04-21
AUTHORS ABSTRACTOne of the well-known effects of the asymptotic freedom is splitting of the leading-log BFKL pomeron into a series of isolated poles in complex angular momentum plane. Following our earlier works we explore the phenomenological consequences of the emerging BFKL-Regge factorized expansion for the small-x charm (F2c) and beauty (F2b) structure functions of the proton. As we found earlier, the colordipole approach to the BFKL dynamics predicts uniquely decoupling of subleading hard BFKL exchanges from F2c at moderately large Q2. We predicted precocious BFKL asymptotics of F2c (x,Q2) with intercept of the rightmost BFKL pole αP(0) − 1 = ΔP ≈ 0.4. High-energy open beauty photo- and electroproduction probes the vacuum exchange at much smaller distances and detects significant corrections to the BFKL asymptotics coming from the subleading vacuum poles. In view of the accumulation of the experimental data on small −xF2c and F2b we extended our early predictions to the kinematical domain covered by new HERA measurements. Our structure functions obtained in 1999 agree well with the determination of both F2c and F2b by the H1 published in 2006 but contradict very recent (2008, preliminary)H1 results on F2b. We present also comparison of our early predictions for the longitudinal structure function FL with recent H1 data (2008) taken at very low Bjorken x. We comment on the electromagnetic corrections to the Okun-Pomeranchuk theorem. More... »
PAGES672-679
http://scigraph.springernature.com/pub.10.1134/s1063778810040137
DOIhttp://dx.doi.org/10.1134/s1063778810040137
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1025729855
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "L.D.Landau Institute for Theoretical Physics, Chernogolovka, Russia",
"id": "http://www.grid.ac/institutes/grid.436090.8",
"name": [
"Institut f\u00fcr Kernphysik, Forschungszentrum J\u00fclich, J\u00fclich, Germany",
"L.D.Landau Institute for Theoretical Physics, Chernogolovka, Russia"
],
"type": "Organization"
},
"familyName": "Nikolaev",
"givenName": "N. N.",
"id": "sg:person.011254113621.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254113621.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Theoretical and Experimental Physics, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.21626.31",
"name": [
"Institute of Theoretical and Experimental Physics, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Zoller",
"givenName": "V. R.",
"id": "sg:person.07653611431.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653611431.49"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1134/1.1312893",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024765249",
"https://doi.org/10.1134/1.1312893"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01483577",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012423985",
"https://doi.org/10.1007/bf01483577"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/1.558573",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019310588",
"https://doi.org/10.1134/1.558573"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1140/epjc/s2005-02415-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000370798",
"https://doi.org/10.1140/epjc/s2005-02415-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/1.567491",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013314149",
"https://doi.org/10.1134/1.567491"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/1.1427107",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034737566",
"https://doi.org/10.1134/1.1427107"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/1.568004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037409166",
"https://doi.org/10.1134/1.568004"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/1.567991",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043234498",
"https://doi.org/10.1134/1.567991"
],
"type": "CreativeWork"
}
],
"datePublished": "2010-04-21",
"datePublishedReg": "2010-04-21",
"description": "One of the well-known effects of the asymptotic freedom is splitting of the leading-log BFKL pomeron into a series of isolated poles in complex angular momentum plane. Following our earlier works we explore the phenomenological consequences of the emerging BFKL-Regge factorized expansion for the small-x charm (F2c) and beauty (F2b) structure functions of the proton. As we found earlier, the colordipole approach to the BFKL dynamics predicts uniquely decoupling of subleading hard BFKL exchanges from F2c at moderately large Q2. We predicted precocious BFKL asymptotics of F2c (x,Q2) with intercept of the rightmost BFKL pole \u03b1P(0) \u2212 1 = \u0394P \u2248 0.4. High-energy open beauty photo- and electroproduction probes the vacuum exchange at much smaller distances and detects significant corrections to the BFKL asymptotics coming from the subleading vacuum poles. In view of the accumulation of the experimental data on small \u2212xF2c and F2b we extended our early predictions to the kinematical domain covered by new HERA measurements. Our structure functions obtained in 1999 agree well with the determination of both F2c and F2b by the H1 published in 2006 but contradict very recent (2008, preliminary)H1 results on F2b. We present also comparison of our early predictions for the longitudinal structure function FL with recent H1 data (2008) taken at very low Bjorken x. We comment on the electromagnetic corrections to the Okun-Pomeranchuk theorem.",
"genre": "article",
"id": "sg:pub.10.1134/s1063778810040137",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136336",
"issn": [
"1063-7788",
"1562-692X"
],
"name": "Physics of Atomic Nuclei",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "73"
}
],
"keywords": [
"longitudinal structure function FL",
"structure functions",
"structure function FL",
"recent H1 data",
"phenomenological consequences",
"kinematical domain",
"HERA measurements",
"vacuum exchange",
"Bjorken x.",
"function FL",
"large Q2",
"electromagnetic corrections",
"momentum plane",
"asymptotic freedom",
"complex angular momentum plane",
"BFKL dynamics",
"vacuum pole",
"angular momentum plane",
"H1 data",
"small distances",
"experimental data",
"significant correction",
"BFKL pomeron",
"charm",
"HERA",
"protons",
"F2C",
"splitting",
"correction",
"Pomeron",
"Q2",
"earlier work",
"plane",
"measurements",
"probe",
"early prediction",
"prediction",
"new data",
"poles",
"dynamics",
"distance",
"freedom",
"exchange",
"photos",
"function",
"\u0394P",
"determination",
"asymptotics",
"expansion",
"data",
"work",
"F2b",
"effect",
"comparison",
"theorem",
"FL",
"consequences",
"series",
"view",
"domain",
"H1",
"approach",
"intercept",
"beauty",
"accumulation"
],
"name": "Beauty, charm, and FL at HERA: New data vs. Early predictions",
"pagination": "672-679",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1025729855"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063778810040137"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063778810040137",
"https://app.dimensions.ai/details/publication/pub.1025729855"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_500.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063778810040137"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063778810040137'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063778810040137'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063778810040137'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063778810040137'
This table displays all metadata directly associated to this object as RDF triples.
166 TRIPLES
22 PREDICATES
98 URIs
82 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063778810040137 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | N390e71cec1d6431a8a4141247d0bcbb6 |
4 | ″ | schema:citation | sg:pub.10.1007/bf01483577 |
5 | ″ | ″ | sg:pub.10.1134/1.1312893 |
6 | ″ | ″ | sg:pub.10.1134/1.1427107 |
7 | ″ | ″ | sg:pub.10.1134/1.558573 |
8 | ″ | ″ | sg:pub.10.1134/1.567491 |
9 | ″ | ″ | sg:pub.10.1134/1.567991 |
10 | ″ | ″ | sg:pub.10.1134/1.568004 |
11 | ″ | ″ | sg:pub.10.1140/epjc/s2005-02415-6 |
12 | ″ | schema:datePublished | 2010-04-21 |
13 | ″ | schema:datePublishedReg | 2010-04-21 |
14 | ″ | schema:description | One of the well-known effects of the asymptotic freedom is splitting of the leading-log BFKL pomeron into a series of isolated poles in complex angular momentum plane. Following our earlier works we explore the phenomenological consequences of the emerging BFKL-Regge factorized expansion for the small-x charm (F2c) and beauty (F2b) structure functions of the proton. As we found earlier, the colordipole approach to the BFKL dynamics predicts uniquely decoupling of subleading hard BFKL exchanges from F2c at moderately large Q2. We predicted precocious BFKL asymptotics of F2c (x,Q2) with intercept of the rightmost BFKL pole αP(0) − 1 = ΔP ≈ 0.4. High-energy open beauty photo- and electroproduction probes the vacuum exchange at much smaller distances and detects significant corrections to the BFKL asymptotics coming from the subleading vacuum poles. In view of the accumulation of the experimental data on small −xF2c and F2b we extended our early predictions to the kinematical domain covered by new HERA measurements. Our structure functions obtained in 1999 agree well with the determination of both F2c and F2b by the H1 published in 2006 but contradict very recent (2008, preliminary)H1 results on F2b. We present also comparison of our early predictions for the longitudinal structure function FL with recent H1 data (2008) taken at very low Bjorken x. We comment on the electromagnetic corrections to the Okun-Pomeranchuk theorem. |
15 | ″ | schema:genre | article |
16 | ″ | schema:inLanguage | en |
17 | ″ | schema:isAccessibleForFree | true |
18 | ″ | schema:isPartOf | N6e9480023b354646b261b0ed7e1ef543 |
19 | ″ | ″ | Na4e60b8b65554dcbb2e02de114ccdea8 |
20 | ″ | ″ | sg:journal.1136336 |
21 | ″ | schema:keywords | BFKL dynamics |
22 | ″ | ″ | BFKL pomeron |
23 | ″ | ″ | Bjorken x. |
24 | ″ | ″ | F2C |
25 | ″ | ″ | F2b |
26 | ″ | ″ | FL |
27 | ″ | ″ | H1 |
28 | ″ | ″ | H1 data |
29 | ″ | ″ | HERA |
30 | ″ | ″ | HERA measurements |
31 | ″ | ″ | Pomeron |
32 | ″ | ″ | Q2 |
33 | ″ | ″ | accumulation |
34 | ″ | ″ | angular momentum plane |
35 | ″ | ″ | approach |
36 | ″ | ″ | asymptotic freedom |
37 | ″ | ″ | asymptotics |
38 | ″ | ″ | beauty |
39 | ″ | ″ | charm |
40 | ″ | ″ | comparison |
41 | ″ | ″ | complex angular momentum plane |
42 | ″ | ″ | consequences |
43 | ″ | ″ | correction |
44 | ″ | ″ | data |
45 | ″ | ″ | determination |
46 | ″ | ″ | distance |
47 | ″ | ″ | domain |
48 | ″ | ″ | dynamics |
49 | ″ | ″ | earlier work |
50 | ″ | ″ | early prediction |
51 | ″ | ″ | effect |
52 | ″ | ″ | electromagnetic corrections |
53 | ″ | ″ | exchange |
54 | ″ | ″ | expansion |
55 | ″ | ″ | experimental data |
56 | ″ | ″ | freedom |
57 | ″ | ″ | function |
58 | ″ | ″ | function FL |
59 | ″ | ″ | intercept |
60 | ″ | ″ | kinematical domain |
61 | ″ | ″ | large Q2 |
62 | ″ | ″ | longitudinal structure function FL |
63 | ″ | ″ | measurements |
64 | ″ | ″ | momentum plane |
65 | ″ | ″ | new data |
66 | ″ | ″ | phenomenological consequences |
67 | ″ | ″ | photos |
68 | ″ | ″ | plane |
69 | ″ | ″ | poles |
70 | ″ | ″ | prediction |
71 | ″ | ″ | probe |
72 | ″ | ″ | protons |
73 | ″ | ″ | recent H1 data |
74 | ″ | ″ | series |
75 | ″ | ″ | significant correction |
76 | ″ | ″ | small distances |
77 | ″ | ″ | splitting |
78 | ″ | ″ | structure function FL |
79 | ″ | ″ | structure functions |
80 | ″ | ″ | theorem |
81 | ″ | ″ | vacuum exchange |
82 | ″ | ″ | vacuum pole |
83 | ″ | ″ | view |
84 | ″ | ″ | work |
85 | ″ | ″ | ΔP |
86 | ″ | schema:name | Beauty, charm, and FL at HERA: New data vs. Early predictions |
87 | ″ | schema:pagination | 672-679 |
88 | ″ | schema:productId | N33d01901375e4c8ea06e3059196db984 |
89 | ″ | ″ | Ncbcbeddeceee4f8f8fcfbe3857dc2b55 |
90 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1025729855 |
91 | ″ | ″ | https://doi.org/10.1134/s1063778810040137 |
92 | ″ | schema:sdDatePublished | 2022-05-20T07:25 |
93 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
94 | ″ | schema:sdPublisher | N8e45947bee6140c996120a9fa2ba09c6 |
95 | ″ | schema:url | https://doi.org/10.1134/s1063778810040137 |
96 | ″ | sgo:license | sg:explorer/license/ |
97 | ″ | sgo:sdDataset | articles |
98 | ″ | rdf:type | schema:ScholarlyArticle |
99 | N33d01901375e4c8ea06e3059196db984 | schema:name | dimensions_id |
100 | ″ | schema:value | pub.1025729855 |
101 | ″ | rdf:type | schema:PropertyValue |
102 | N390e71cec1d6431a8a4141247d0bcbb6 | rdf:first | sg:person.011254113621.16 |
103 | ″ | rdf:rest | N5fb59bd75170451fb5b6f44cac6a7e62 |
104 | N5fb59bd75170451fb5b6f44cac6a7e62 | rdf:first | sg:person.07653611431.49 |
105 | ″ | rdf:rest | rdf:nil |
106 | N6e9480023b354646b261b0ed7e1ef543 | schema:volumeNumber | 73 |
107 | ″ | rdf:type | schema:PublicationVolume |
108 | N8e45947bee6140c996120a9fa2ba09c6 | schema:name | Springer Nature - SN SciGraph project |
109 | ″ | rdf:type | schema:Organization |
110 | Na4e60b8b65554dcbb2e02de114ccdea8 | schema:issueNumber | 4 |
111 | ″ | rdf:type | schema:PublicationIssue |
112 | Ncbcbeddeceee4f8f8fcfbe3857dc2b55 | schema:name | doi |
113 | ″ | schema:value | 10.1134/s1063778810040137 |
114 | ″ | rdf:type | schema:PropertyValue |
115 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Physical Sciences |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
119 | ″ | schema:name | Other Physical Sciences |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | sg:journal.1136336 | schema:issn | 1063-7788 |
122 | ″ | ″ | 1562-692X |
123 | ″ | schema:name | Physics of Atomic Nuclei |
124 | ″ | schema:publisher | Pleiades Publishing |
125 | ″ | rdf:type | schema:Periodical |
126 | sg:person.011254113621.16 | schema:affiliation | grid-institutes:grid.436090.8 |
127 | ″ | schema:familyName | Nikolaev |
128 | ″ | schema:givenName | N. N. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254113621.16 |
130 | ″ | rdf:type | schema:Person |
131 | sg:person.07653611431.49 | schema:affiliation | grid-institutes:grid.21626.31 |
132 | ″ | schema:familyName | Zoller |
133 | ″ | schema:givenName | V. R. |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653611431.49 |
135 | ″ | rdf:type | schema:Person |
136 | sg:pub.10.1007/bf01483577 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012423985 |
137 | ″ | ″ | https://doi.org/10.1007/bf01483577 |
138 | ″ | rdf:type | schema:CreativeWork |
139 | sg:pub.10.1134/1.1312893 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1024765249 |
140 | ″ | ″ | https://doi.org/10.1134/1.1312893 |
141 | ″ | rdf:type | schema:CreativeWork |
142 | sg:pub.10.1134/1.1427107 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034737566 |
143 | ″ | ″ | https://doi.org/10.1134/1.1427107 |
144 | ″ | rdf:type | schema:CreativeWork |
145 | sg:pub.10.1134/1.558573 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019310588 |
146 | ″ | ″ | https://doi.org/10.1134/1.558573 |
147 | ″ | rdf:type | schema:CreativeWork |
148 | sg:pub.10.1134/1.567491 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013314149 |
149 | ″ | ″ | https://doi.org/10.1134/1.567491 |
150 | ″ | rdf:type | schema:CreativeWork |
151 | sg:pub.10.1134/1.567991 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1043234498 |
152 | ″ | ″ | https://doi.org/10.1134/1.567991 |
153 | ″ | rdf:type | schema:CreativeWork |
154 | sg:pub.10.1134/1.568004 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037409166 |
155 | ″ | ″ | https://doi.org/10.1134/1.568004 |
156 | ″ | rdf:type | schema:CreativeWork |
157 | sg:pub.10.1140/epjc/s2005-02415-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000370798 |
158 | ″ | ″ | https://doi.org/10.1140/epjc/s2005-02415-6 |
159 | ″ | rdf:type | schema:CreativeWork |
160 | grid-institutes:grid.21626.31 | schema:alternateName | Institute of Theoretical and Experimental Physics, Moscow, Russia |
161 | ″ | schema:name | Institute of Theoretical and Experimental Physics, Moscow, Russia |
162 | ″ | rdf:type | schema:Organization |
163 | grid-institutes:grid.436090.8 | schema:alternateName | L.D.Landau Institute for Theoretical Physics, Chernogolovka, Russia |
164 | ″ | schema:name | Institut für Kernphysik, Forschungszentrum Jülich, Jülich, Germany |
165 | ″ | ″ | L.D.Landau Institute for Theoretical Physics, Chernogolovka, Russia |
166 | ″ | rdf:type | schema:Organization |