Structure of a confining gluon string within the field correlator method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-02-25

AUTHORS

I. E. Kozlov, M. N. Chernodub

ABSTRACT

The structure of the chromoelectric string in the Euclidian formulation of Yang-Mills theory is studied by using multipoint correlation functions involving Wilson loop operators and the strength tensors of the gluon field. It is shown that the local densities of the action functional and the squared topological charge in the vicinity of the static-string axis must be markedly smaller than the corresponding values far off the string. Analytic results obtained in this study are in agreement with the results of a lattice simulation of Yang-Mills theory. More... »

PAGES

343-349

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063778809020227

DOI

http://dx.doi.org/10.1134/s1063778809020227

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040561785


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University, 119992, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Institute of Theoretical and Experimental Physics, Bol\u2019shaya Cheremushkinskaya ul. 25, 117259, Moscow, Russia", 
            "Moscow State University, 119992, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozlov", 
        "givenName": "I. E.", 
        "id": "sg:person.011630132401.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011630132401.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Theoretical and Experimental Physics, Bol\u2019shaya Cheremushkinskaya ul. 25, 117259, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Institute of Theoretical and Experimental Physics, Bol\u2019shaya Cheremushkinskaya ul. 25, 117259, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernodub", 
        "givenName": "M. N.", 
        "id": "sg:person.010306364071.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306364071.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/1.568311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034250885", 
          "https://doi.org/10.1134/1.568311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.568296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020479779", 
          "https://doi.org/10.1134/1.568296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364007130012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026220608", 
          "https://doi.org/10.1134/s0021364007130012"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-02-25", 
    "datePublishedReg": "2009-02-25", 
    "description": "The structure of the chromoelectric string in the Euclidian formulation of Yang-Mills theory is studied by using multipoint correlation functions involving Wilson loop operators and the strength tensors of the gluon field. It is shown that the local densities of the action functional and the squared topological charge in the vicinity of the static-string axis must be markedly smaller than the corresponding values far off the string. Analytic results obtained in this study are in agreement with the results of a lattice simulation of Yang-Mills theory.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063778809020227", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136336", 
        "issn": [
          "1063-7788", 
          "1562-692X"
        ], 
        "name": "Physics of Atomic Nuclei", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "72"
      }
    ], 
    "keywords": [
      "Yang-Mills theory", 
      "multipoint correlation functions", 
      "Wilson loop operator", 
      "loop operators", 
      "strength tensor", 
      "analytic results", 
      "gluon string", 
      "field correlator method", 
      "correlation functions", 
      "correlator method", 
      "topological charge", 
      "strings", 
      "lattice simulations", 
      "theory", 
      "operators", 
      "gluon fields", 
      "formulation", 
      "tensor", 
      "simulations", 
      "function", 
      "results", 
      "structure", 
      "field", 
      "local density", 
      "values", 
      "agreement", 
      "density", 
      "vicinity", 
      "charge", 
      "action", 
      "study", 
      "method", 
      "chromoelectric string", 
      "Euclidian formulation", 
      "squared topological charge", 
      "confining gluon string"
    ], 
    "name": "Structure of a confining gluon string within the field correlator method", 
    "pagination": "343-349", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040561785"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063778809020227"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063778809020227", 
      "https://app.dimensions.ai/details/publication/pub.1040561785"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063778809020227"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063778809020227'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063778809020227'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063778809020227'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063778809020227'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      22 PREDICATES      64 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063778809020227 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N81a27da2d0084243b85a72466ce73fd6
4 schema:citation sg:pub.10.1134/1.568296
5 sg:pub.10.1134/1.568311
6 sg:pub.10.1134/s0021364007130012
7 schema:datePublished 2009-02-25
8 schema:datePublishedReg 2009-02-25
9 schema:description The structure of the chromoelectric string in the Euclidian formulation of Yang-Mills theory is studied by using multipoint correlation functions involving Wilson loop operators and the strength tensors of the gluon field. It is shown that the local densities of the action functional and the squared topological charge in the vicinity of the static-string axis must be markedly smaller than the corresponding values far off the string. Analytic results obtained in this study are in agreement with the results of a lattice simulation of Yang-Mills theory.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Nd6fde782f14a4c1699e3f636e428c1fa
14 Nfca588a20ad54c44836979bc03ba1d3f
15 sg:journal.1136336
16 schema:keywords Euclidian formulation
17 Wilson loop operator
18 Yang-Mills theory
19 action
20 agreement
21 analytic results
22 charge
23 chromoelectric string
24 confining gluon string
25 correlation functions
26 correlator method
27 density
28 field
29 field correlator method
30 formulation
31 function
32 gluon fields
33 gluon string
34 lattice simulations
35 local density
36 loop operators
37 method
38 multipoint correlation functions
39 operators
40 results
41 simulations
42 squared topological charge
43 strength tensor
44 strings
45 structure
46 study
47 tensor
48 theory
49 topological charge
50 values
51 vicinity
52 schema:name Structure of a confining gluon string within the field correlator method
53 schema:pagination 343-349
54 schema:productId N473aa4a60aec41478f10a739f07c2373
55 Na3252dafffe44b03866b300d60ccffd0
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040561785
57 https://doi.org/10.1134/s1063778809020227
58 schema:sdDatePublished 2021-12-01T19:22
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N2f0abebb3bb0428983de521c2193ea2d
61 schema:url https://doi.org/10.1134/s1063778809020227
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N2f0abebb3bb0428983de521c2193ea2d schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N473aa4a60aec41478f10a739f07c2373 schema:name dimensions_id
68 schema:value pub.1040561785
69 rdf:type schema:PropertyValue
70 N81a27da2d0084243b85a72466ce73fd6 rdf:first sg:person.011630132401.16
71 rdf:rest Nb18a3a3382714c1bbc8f1fb844972d65
72 Na3252dafffe44b03866b300d60ccffd0 schema:name doi
73 schema:value 10.1134/s1063778809020227
74 rdf:type schema:PropertyValue
75 Nb18a3a3382714c1bbc8f1fb844972d65 rdf:first sg:person.010306364071.34
76 rdf:rest rdf:nil
77 Nd6fde782f14a4c1699e3f636e428c1fa schema:issueNumber 2
78 rdf:type schema:PublicationIssue
79 Nfca588a20ad54c44836979bc03ba1d3f schema:volumeNumber 72
80 rdf:type schema:PublicationVolume
81 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
82 schema:name Physical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
85 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
86 rdf:type schema:DefinedTerm
87 sg:journal.1136336 schema:issn 1063-7788
88 1562-692X
89 schema:name Physics of Atomic Nuclei
90 schema:publisher Pleiades Publishing
91 rdf:type schema:Periodical
92 sg:person.010306364071.34 schema:affiliation grid-institutes:grid.21626.31
93 schema:familyName Chernodub
94 schema:givenName M. N.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306364071.34
96 rdf:type schema:Person
97 sg:person.011630132401.16 schema:affiliation grid-institutes:grid.14476.30
98 schema:familyName Kozlov
99 schema:givenName I. E.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011630132401.16
101 rdf:type schema:Person
102 sg:pub.10.1134/1.568296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020479779
103 https://doi.org/10.1134/1.568296
104 rdf:type schema:CreativeWork
105 sg:pub.10.1134/1.568311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034250885
106 https://doi.org/10.1134/1.568311
107 rdf:type schema:CreativeWork
108 sg:pub.10.1134/s0021364007130012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026220608
109 https://doi.org/10.1134/s0021364007130012
110 rdf:type schema:CreativeWork
111 grid-institutes:grid.14476.30 schema:alternateName Moscow State University, 119992, Moscow, Russia
112 schema:name Institute of Theoretical and Experimental Physics, Bol’shaya Cheremushkinskaya ul. 25, 117259, Moscow, Russia
113 Moscow State University, 119992, Moscow, Russia
114 rdf:type schema:Organization
115 grid-institutes:grid.21626.31 schema:alternateName Institute of Theoretical and Experimental Physics, Bol’shaya Cheremushkinskaya ul. 25, 117259, Moscow, Russia
116 schema:name Institute of Theoretical and Experimental Physics, Bol’shaya Cheremushkinskaya ul. 25, 117259, Moscow, Russia
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...