Band and Impurity States in Dimond with the (MV)– (M = Si, Ge, Sn) Centers Based on ab Initio Calculations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

B. N. Mavrin

ABSTRACT

Ab initio calculations were used to determine the structure, electronic zone dispersion, partial (atomic and orbital) densities of states, and levels of impurity–vacancy cluster (MV)– (M = Si, Ge, Sn) in diamond. Wavefunctions were determined in the density functional theory approximation using hybrid exchange-correlation functional, localized basis set of Gaussians, and a supercell consisting of 192 atoms. Results are compared with data on undoped diamond and with experimental results. The dependence of the direct and indirect energy gap on the cluster type is discussed. Calculations are carried out taking into account the spin–orbit interaction to identify impurity levels in the valence band. The effect of electron–electron interaction on the position of impurity levels is discussed. The dominant contribution of the d orbitals to the density of states at the impurity level in all clusters is detected. More... »

PAGES

1016-1021

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063776118120208

DOI

http://dx.doi.org/10.1134/s1063776118120208

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112291468


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute for Spectroscopy, Russian Academy of Sciences, 108840, TroitskMoscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mavrin", 
        "givenName": "B. N.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/qua.24658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002517241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004967284", 
          "https://doi.org/10.1038/nature09256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.235205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006142399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.235205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006142399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006539606", 
          "https://doi.org/10.1038/nmat2420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006539606", 
          "https://doi.org/10.1038/nmat2420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2016.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010615346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2016.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010615346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2016.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010615346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2016.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010615346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/9/25/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012119778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/jmr.1990.2277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018202325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.036405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022725234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.036405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022725234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/242/1/012004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024410455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030127668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030127668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/39/1/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031598809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/39/1/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031598809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.3048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060553593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.3048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060553593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.17791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.17791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.075204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060622063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.075204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060622063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.205211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.205211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.045203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.045203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1139831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062455316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufne.2016.11.037959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071210988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/aa73e5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085538205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jlumin.2017.07.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090806292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.7b00904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091963072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.253601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099971240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.253601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099971240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.045206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100502475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.045206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100502475"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Ab initio calculations were used to determine the structure, electronic zone dispersion, partial (atomic and orbital) densities of states, and levels of impurity\u2013vacancy cluster (MV)\u2013 (M = Si, Ge, Sn) in diamond. Wavefunctions were determined in the density functional theory approximation using hybrid exchange-correlation functional, localized basis set of Gaussians, and a supercell consisting of 192 atoms. Results are compared with data on undoped diamond and with experimental results. The dependence of the direct and indirect energy gap on the cluster type is discussed. Calculations are carried out taking into account the spin\u2013orbit interaction to identify impurity levels in the valence band. The effect of electron\u2013electron interaction on the position of impurity levels is discussed. The dominant contribution of the d orbitals to the density of states at the impurity level in all clusters is detected.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063776118120208", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "name": "Band and Impurity States in Dimond with the (MV)\u2013 (M = Si, Ge, Sn) Centers Based on ab Initio Calculations", 
    "pagination": "1016-1021", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "570d2293aadc46f02fee94fadc5c60956b16c1f74460a07ad055c7f539acd853"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063776118120208"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112291468"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063776118120208", 
      "https://app.dimensions.ai/details/publication/pub.1112291468"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99841_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063776118120208"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063776118120208'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063776118120208'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063776118120208'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063776118120208'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063776118120208 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N74a8725370b14a06bf485b04965c6489
4 schema:citation sg:pub.10.1038/nature09256
5 sg:pub.10.1038/nmat2420
6 https://doi.org/10.1002/qua.24658
7 https://doi.org/10.1016/j.cpc.2016.04.003
8 https://doi.org/10.1016/j.jlumin.2017.07.031
9 https://doi.org/10.1021/acsphotonics.7b00904
10 https://doi.org/10.1088/0953-4075/39/1/005
11 https://doi.org/10.1088/0953-8984/9/25/005
12 https://doi.org/10.1088/1367-2630/aa73e5
13 https://doi.org/10.1088/1742-6596/242/1/012004
14 https://doi.org/10.1103/physrevb.41.3048
15 https://doi.org/10.1103/physrevb.48.17791
16 https://doi.org/10.1103/physrevb.76.075204
17 https://doi.org/10.1103/physrevb.84.205211
18 https://doi.org/10.1103/physrevb.88.235205
19 https://doi.org/10.1103/physrevb.94.045203
20 https://doi.org/10.1103/physrevb.97.045206
21 https://doi.org/10.1103/physrevlett.112.036405
22 https://doi.org/10.1103/physrevlett.119.253601
23 https://doi.org/10.1103/physrevlett.77.3041
24 https://doi.org/10.1103/revmodphys.74.145
25 https://doi.org/10.1126/science.1139831
26 https://doi.org/10.1557/jmr.1990.2277
27 https://doi.org/10.3367/ufne.2016.11.037959
28 schema:datePublished 2018-12
29 schema:datePublishedReg 2018-12-01
30 schema:description Ab initio calculations were used to determine the structure, electronic zone dispersion, partial (atomic and orbital) densities of states, and levels of impurity–vacancy cluster (MV)– (M = Si, Ge, Sn) in diamond. Wavefunctions were determined in the density functional theory approximation using hybrid exchange-correlation functional, localized basis set of Gaussians, and a supercell consisting of 192 atoms. Results are compared with data on undoped diamond and with experimental results. The dependence of the direct and indirect energy gap on the cluster type is discussed. Calculations are carried out taking into account the spin–orbit interaction to identify impurity levels in the valence band. The effect of electron–electron interaction on the position of impurity levels is discussed. The dominant contribution of the d orbitals to the density of states at the impurity level in all clusters is detected.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N3d74eee90d5b4fbabd4c5f170995a81f
35 Ncfe37b4306644fe2bac0e361ba7c4616
36 sg:journal.1295107
37 schema:name Band and Impurity States in Dimond with the (MV)– (M = Si, Ge, Sn) Centers Based on ab Initio Calculations
38 schema:pagination 1016-1021
39 schema:productId N28998abe58714c0ea72750f639413769
40 N7662ad4d6022402f85e6fd4ac015ef3d
41 Nd8c4545057ef4f1c8a5ff33dd5178848
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112291468
43 https://doi.org/10.1134/s1063776118120208
44 schema:sdDatePublished 2019-04-11T09:41
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N5e58b7052d864520a0bfe2bde583e7e3
47 schema:url https://link.springer.com/10.1134%2FS1063776118120208
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N28998abe58714c0ea72750f639413769 schema:name readcube_id
52 schema:value 570d2293aadc46f02fee94fadc5c60956b16c1f74460a07ad055c7f539acd853
53 rdf:type schema:PropertyValue
54 N3d74eee90d5b4fbabd4c5f170995a81f schema:issueNumber 6
55 rdf:type schema:PublicationIssue
56 N4164c7fe9e1d4b0ab47675e8449f7fc2 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
57 schema:familyName Mavrin
58 schema:givenName B. N.
59 rdf:type schema:Person
60 N5e58b7052d864520a0bfe2bde583e7e3 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N74a8725370b14a06bf485b04965c6489 rdf:first N4164c7fe9e1d4b0ab47675e8449f7fc2
63 rdf:rest rdf:nil
64 N7662ad4d6022402f85e6fd4ac015ef3d schema:name doi
65 schema:value 10.1134/s1063776118120208
66 rdf:type schema:PropertyValue
67 Ncfe37b4306644fe2bac0e361ba7c4616 schema:volumeNumber 127
68 rdf:type schema:PublicationVolume
69 Nd8c4545057ef4f1c8a5ff33dd5178848 schema:name dimensions_id
70 schema:value pub.1112291468
71 rdf:type schema:PropertyValue
72 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
73 schema:name Physical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
76 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
77 rdf:type schema:DefinedTerm
78 sg:journal.1295107 schema:issn 1063-7761
79 1090-6509
80 schema:name Journal of Experimental and Theoretical Physics
81 rdf:type schema:Periodical
82 sg:pub.10.1038/nature09256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004967284
83 https://doi.org/10.1038/nature09256
84 rdf:type schema:CreativeWork
85 sg:pub.10.1038/nmat2420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006539606
86 https://doi.org/10.1038/nmat2420
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1002/qua.24658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002517241
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.cpc.2016.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010615346
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.jlumin.2017.07.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090806292
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1021/acsphotonics.7b00904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091963072
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1088/0953-4075/39/1/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031598809
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1088/0953-8984/9/25/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012119778
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1088/1367-2630/aa73e5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085538205
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1088/1742-6596/242/1/012004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024410455
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevb.41.3048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060553593
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevb.48.17791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060568092
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physrevb.76.075204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060622063
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physrevb.84.205211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060637513
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevb.88.235205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006142399
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevb.94.045203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060651363
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevb.97.045206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100502475
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevlett.112.036405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022725234
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevlett.119.253601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099971240
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevlett.77.3041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814011
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/revmodphys.74.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030127668
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1126/science.1139831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062455316
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1557/jmr.1990.2277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018202325
129 rdf:type schema:CreativeWork
130 https://doi.org/10.3367/ufne.2016.11.037959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071210988
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
133 schema:name Institute for Spectroscopy, Russian Academy of Sciences, 108840, TroitskMoscow, Russia
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...