Effect of Impurities on the Formation Energy of Point Defects in the γ-TiAl Alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

A. V. Bakulin, S. E. Kulkova

ABSTRACT

The projector augmented-wave method within density functional theory is used to study the effect of 4d elements and Group IIIA and IVA elements on the energetics of point defect formation and elastic moduli of the γ-TiAl alloy. To calculate the point defect formation energy, the grand canonical formalism was used. It is shown that the formation energy of aluminum vacancies decreases by approximately 1.3 eV with increasing its content in the series of alloys Ti3Al–TiAl–TiAl3, whereas the formation energy of titanium vacancies changes insignificantly. In general, the formation of titanium vacancies in these alloys is preferred to the formation of aluminum vacancies. It has been found that Nb, Mo, Tc, Ru, Rh, and Pd impurities on the aluminum sublattice contribute to an increase in the formation energy of an aluminum vacancies, and Mo and Tc also lead to an increase in the formation energy of titanium vacancies. All 4d impurities, if they substitute for titanium, reduce the formation energy of aluminum vacancies, and Nb and Mo are favorable for increasing the formation energy of titanium vacancies. The influence of impurities on the chemical bond in the γ-TiAl alloy and its elastic moduli and characteristics based on them is discussed. More... »

PAGES

1046-1058

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063776118120130

DOI

http://dx.doi.org/10.1134/s1063776118120130

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112291464


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakulin", 
        "givenName": "A. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulkova", 
        "givenName": "S. E.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1359-6454(99)00006-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002591761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008708156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0036-9748(88)80064-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008880287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.2221910205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009852791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/31/315503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010285116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/31/315503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010285116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zamm.19290090104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010507429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786440808520496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012076321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4951009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012560707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500839008215053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013797182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(99)00400-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014545629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2013.08.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018787922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/095008396181019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022751029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.intermet.2011.03.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023618435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.24300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026596180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063776115020090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026665971", 
          "https://doi.org/10.1134/s1063776115020090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03220267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027937990", 
          "https://doi.org/10.1007/bf03220267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027988803", 
          "https://doi.org/10.1038/nmat790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027988803", 
          "https://doi.org/10.1038/nmat790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(90)90131-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034591843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(90)90131-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034591843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1036214071", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-07461-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036214071", 
          "https://doi.org/10.1007/978-3-319-07461-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-07461-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036214071", 
          "https://doi.org/10.1007/978-3-319-07461-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/jmr.2009.0394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042330589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.paerosci.2012.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042754218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1471-5317(02)00038-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045639216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1471-5317(02)00038-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045639216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2014.07.199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046297781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01418639408240267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046605021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00084433.2016.1169660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046934513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100135a014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055654428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2717143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057859823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.362880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057988080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0370-1298/65/5/307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059090844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.13115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060567414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.13115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060567414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.6457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.6457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.13459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.13459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.014201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060612352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.014201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060612352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.134110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060617107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.134110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060617107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.174110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060619145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.174110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060619145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.185505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.185505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/s0883769400031420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067962413"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The projector augmented-wave method within density functional theory is used to study the effect of 4d elements and Group IIIA and IVA elements on the energetics of point defect formation and elastic moduli of the \u03b3-TiAl alloy. To calculate the point defect formation energy, the grand canonical formalism was used. It is shown that the formation energy of aluminum vacancies decreases by approximately 1.3 eV with increasing its content in the series of alloys Ti3Al\u2013TiAl\u2013TiAl3, whereas the formation energy of titanium vacancies changes insignificantly. In general, the formation of titanium vacancies in these alloys is preferred to the formation of aluminum vacancies. It has been found that Nb, Mo, Tc, Ru, Rh, and Pd impurities on the aluminum sublattice contribute to an increase in the formation energy of an aluminum vacancies, and Mo and Tc also lead to an increase in the formation energy of titanium vacancies. All 4d impurities, if they substitute for titanium, reduce the formation energy of aluminum vacancies, and Nb and Mo are favorable for increasing the formation energy of titanium vacancies. The influence of impurities on the chemical bond in the \u03b3-TiAl alloy and its elastic moduli and characteristics based on them is discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063776118120130", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7595029", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "name": "Effect of Impurities on the Formation Energy of Point Defects in the \u03b3-TiAl Alloy", 
    "pagination": "1046-1058", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "621c76583cd60b39da309f1f15529ed79a354ebae5e2d53258216a65a8d21ef2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063776118120130"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112291464"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063776118120130", 
      "https://app.dimensions.ai/details/publication/pub.1112291464"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99843_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063776118120130"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063776118120130'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063776118120130'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063776118120130'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063776118120130'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063776118120130 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf23ccb04c417489fbeb7e68892f00b84
4 schema:citation sg:pub.10.1007/978-3-319-07461-0
5 sg:pub.10.1007/bf03220267
6 sg:pub.10.1038/nmat790
7 sg:pub.10.1134/s1063776115020090
8 https://app.dimensions.ai/details/publication/pub.1036214071
9 https://doi.org/10.1002/jcc.24300
10 https://doi.org/10.1002/pssb.2221910205
11 https://doi.org/10.1002/zamm.19290090104
12 https://doi.org/10.1016/0927-0256(96)00008-0
13 https://doi.org/10.1016/0956-7151(90)90131-y
14 https://doi.org/10.1016/j.commatsci.2013.08.060
15 https://doi.org/10.1016/j.intermet.2011.03.026
16 https://doi.org/10.1016/j.jallcom.2014.07.199
17 https://doi.org/10.1016/j.paerosci.2012.04.001
18 https://doi.org/10.1016/s0036-9748(88)80064-4
19 https://doi.org/10.1016/s1359-6454(99)00006-3
20 https://doi.org/10.1016/s1359-6454(99)00400-0
21 https://doi.org/10.1016/s1471-5317(02)00038-x
22 https://doi.org/10.1021/j100135a014
23 https://doi.org/10.1063/1.2717143
24 https://doi.org/10.1063/1.362880
25 https://doi.org/10.1063/1.4951009
26 https://doi.org/10.1080/00084433.2016.1169660
27 https://doi.org/10.1080/01418639408240267
28 https://doi.org/10.1080/09500839008215053
29 https://doi.org/10.1080/095008396181019
30 https://doi.org/10.1080/14786440808520496
31 https://doi.org/10.1088/0370-1298/65/5/307
32 https://doi.org/10.1088/0953-8984/22/31/315503
33 https://doi.org/10.1103/physrevb.13.5188
34 https://doi.org/10.1103/physrevb.48.13115
35 https://doi.org/10.1103/physrevb.49.6457
36 https://doi.org/10.1103/physrevb.50.17953
37 https://doi.org/10.1103/physrevb.57.13459
38 https://doi.org/10.1103/physrevb.59.1758
39 https://doi.org/10.1103/physrevb.71.014201
40 https://doi.org/10.1103/physrevb.73.134110
41 https://doi.org/10.1103/physrevb.74.174110
42 https://doi.org/10.1103/physrevlett.77.3865
43 https://doi.org/10.1103/physrevlett.92.185505
44 https://doi.org/10.1557/jmr.2009.0394
45 https://doi.org/10.1557/s0883769400031420
46 schema:datePublished 2018-12
47 schema:datePublishedReg 2018-12-01
48 schema:description The projector augmented-wave method within density functional theory is used to study the effect of 4d elements and Group IIIA and IVA elements on the energetics of point defect formation and elastic moduli of the γ-TiAl alloy. To calculate the point defect formation energy, the grand canonical formalism was used. It is shown that the formation energy of aluminum vacancies decreases by approximately 1.3 eV with increasing its content in the series of alloys Ti3Al–TiAl–TiAl3, whereas the formation energy of titanium vacancies changes insignificantly. In general, the formation of titanium vacancies in these alloys is preferred to the formation of aluminum vacancies. It has been found that Nb, Mo, Tc, Ru, Rh, and Pd impurities on the aluminum sublattice contribute to an increase in the formation energy of an aluminum vacancies, and Mo and Tc also lead to an increase in the formation energy of titanium vacancies. All 4d impurities, if they substitute for titanium, reduce the formation energy of aluminum vacancies, and Nb and Mo are favorable for increasing the formation energy of titanium vacancies. The influence of impurities on the chemical bond in the γ-TiAl alloy and its elastic moduli and characteristics based on them is discussed.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N1b7d00123b5d45b484f67f3892221653
53 N5f53704b7cc74b6195ca744c52932bd5
54 sg:journal.1295107
55 schema:name Effect of Impurities on the Formation Energy of Point Defects in the γ-TiAl Alloy
56 schema:pagination 1046-1058
57 schema:productId N4d770e430ad64a9994b4886a971554d0
58 N973a5456bc604978a5a87ee59e891716
59 Nec16eb78955f488f9038943ff2c4520a
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112291464
61 https://doi.org/10.1134/s1063776118120130
62 schema:sdDatePublished 2019-04-11T09:42
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N99c17227814447d298ca6ab869df4f00
65 schema:url https://link.springer.com/10.1134%2FS1063776118120130
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N1216f076dbdc4d29aed8fa33c7fa7e79 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
70 schema:familyName Kulkova
71 schema:givenName S. E.
72 rdf:type schema:Person
73 N1b7d00123b5d45b484f67f3892221653 schema:volumeNumber 127
74 rdf:type schema:PublicationVolume
75 N4d770e430ad64a9994b4886a971554d0 schema:name readcube_id
76 schema:value 621c76583cd60b39da309f1f15529ed79a354ebae5e2d53258216a65a8d21ef2
77 rdf:type schema:PropertyValue
78 N5f53704b7cc74b6195ca744c52932bd5 schema:issueNumber 6
79 rdf:type schema:PublicationIssue
80 N72536241f6bf49049804668915498b54 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
81 schema:familyName Bakulin
82 schema:givenName A. V.
83 rdf:type schema:Person
84 N973a5456bc604978a5a87ee59e891716 schema:name dimensions_id
85 schema:value pub.1112291464
86 rdf:type schema:PropertyValue
87 N99c17227814447d298ca6ab869df4f00 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Na11bd442491a4aa3af7aa7e80b0ba6a7 rdf:first N1216f076dbdc4d29aed8fa33c7fa7e79
90 rdf:rest rdf:nil
91 Nec16eb78955f488f9038943ff2c4520a schema:name doi
92 schema:value 10.1134/s1063776118120130
93 rdf:type schema:PropertyValue
94 Nf23ccb04c417489fbeb7e68892f00b84 rdf:first N72536241f6bf49049804668915498b54
95 rdf:rest Na11bd442491a4aa3af7aa7e80b0ba6a7
96 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
97 schema:name Engineering
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
100 schema:name Materials Engineering
101 rdf:type schema:DefinedTerm
102 sg:grant.7595029 http://pending.schema.org/fundedItem sg:pub.10.1134/s1063776118120130
103 rdf:type schema:MonetaryGrant
104 sg:journal.1295107 schema:issn 1063-7761
105 1090-6509
106 schema:name Journal of Experimental and Theoretical Physics
107 rdf:type schema:Periodical
108 sg:pub.10.1007/978-3-319-07461-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036214071
109 https://doi.org/10.1007/978-3-319-07461-0
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf03220267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027937990
112 https://doi.org/10.1007/bf03220267
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nmat790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027988803
115 https://doi.org/10.1038/nmat790
116 rdf:type schema:CreativeWork
117 sg:pub.10.1134/s1063776115020090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026665971
118 https://doi.org/10.1134/s1063776115020090
119 rdf:type schema:CreativeWork
120 https://app.dimensions.ai/details/publication/pub.1036214071 schema:CreativeWork
121 https://doi.org/10.1002/jcc.24300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026596180
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/pssb.2221910205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009852791
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/zamm.19290090104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010507429
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0956-7151(90)90131-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034591843
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.commatsci.2013.08.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018787922
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.intermet.2011.03.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023618435
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.jallcom.2014.07.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046297781
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.paerosci.2012.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042754218
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0036-9748(88)80064-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008880287
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s1359-6454(99)00006-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002591761
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s1359-6454(99)00400-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014545629
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s1471-5317(02)00038-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045639216
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1021/j100135a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055654428
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.2717143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057859823
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.362880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057988080
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.4951009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012560707
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1080/00084433.2016.1169660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046934513
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1080/01418639408240267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046605021
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1080/09500839008215053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013797182
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1080/095008396181019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022751029
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1080/14786440808520496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012076321
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1088/0370-1298/65/5/307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059090844
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/0953-8984/22/31/315503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010285116
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevb.13.5188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521190
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevb.48.13115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060567414
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevb.49.6457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060571209
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevb.57.13459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060587483
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevb.59.1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591374
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevb.71.014201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060612352
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevb.73.134110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060617107
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevb.74.174110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060619145
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.92.185505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828302
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1557/jmr.2009.0394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042330589
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1557/s0883769400031420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067962413
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science
196 schema:name Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.77602.34 schema:alternateName Tomsk State University
199 schema:name National Research Tomsk State University, 634050, Tomsk, Russia
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...