Dynamics and Stability of Subsonic Crowdion Clusters in 2D Morse Crystal View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

E. A. Korznikova, I. A. Shepelev, A. P. Chetverikov, S. V. Dmitriev, S. Yu. Fomin, Kun Zhou

ABSTRACT

Recently, the concept of supersonic N-crowdions was offered. In molecular dynamics simulations, they can be excited by initial kick of N neighboring atoms located in one close-packed atomic row along this row. In the present study, in 2D Morse crystal, we apply initial kick to M neighboring atoms located in neighboring close-packed atomic rows along these rows. This way, we initiate crowdion clusters called subsonic M-crowdions. It is well known that static 1-crowdion in 2D Morse lattice is unstable; as a result, the interstitial atom leaves the close-packed atomic row and becomes immobile. However, we show that 1-crowdion moving with sufficiently large subsonic velocity remains in the close-packed atomic row. Crowdion clusters with M equal to or greater than 2 appear to be stable even at rest, with growing M transforming into prismatic dislocation loops. It is important to note that stable subsonic M-crowdions (M > 1) remain mobile and they can carry interstitial atoms over long distances. More... »

PAGES

1009-1015

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063776118120063

DOI

http://dx.doi.org/10.1134/s1063776118120063

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112291460


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ufa State Aviation Technical University", 
          "id": "https://www.grid.ac/institutes/grid.82861.35", 
          "name": [
            "Institute for Metals Superplasticity Problems, Russian Academy of Sciences, 450001, Ufa, Russia", 
            "Ufa State Aviation Technical University, 450008, Ufa, Russia", 
            "Saratov Chernyshevsky National Research State University, 410012, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korznikova", 
        "givenName": "E. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Saratov Chernyshevsky National Research State University, 410012, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shepelev", 
        "givenName": "I. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Saratov Chernyshevsky National Research State University, 410012, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chetverikov", 
        "givenName": "A. P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Institute for Metals Superplasticity Problems, Russian Academy of Sciences, 450001, Ufa, Russia", 
            "Saratov Chernyshevsky National Research State University, 410012, Saratov, Russia", 
            "National Research Tomsk State University, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dmitriev", 
        "givenName": "S. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ufa State Aviation Technical University", 
          "id": "https://www.grid.ac/institutes/grid.82861.35", 
          "name": [
            "Ufa State Aviation Technical University, 450008, Ufa, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fomin", 
        "givenName": "S. Yu.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanyang Technological University", 
          "id": "https://www.grid.ac/institutes/grid.59025.3b", 
          "name": [
            "School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Kun", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.91.022912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001801203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.022912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001801203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2016-70142-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007740016", 
          "https://doi.org/10.1140/epjb/e2016-70142-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2016-70142-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007740016", 
          "https://doi.org/10.1140/epjb/e2016-70142-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/78/10004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009261282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep05096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009541283", 
          "https://doi.org/10.1038/srep05096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(88)90714-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010479396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(88)90714-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010479396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2002-00302-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010757035", 
          "https://doi.org/10.1140/epjb/e2002-00302-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2010.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015824894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2003.12.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020445153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnucmat.2014.06.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021787620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2016-70145-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023304133", 
          "https://doi.org/10.1140/epjb/e2016-70145-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2016-70145-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023304133", 
          "https://doi.org/10.1140/epjb/e2016-70145-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1359-0189(88)90098-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023902114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1359-0189(88)90098-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023902114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0141861021000016793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029805860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/095008399177345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030025442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(95)00198-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031757513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786430310001599388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034624515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783406070134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035005640", 
          "https://doi.org/10.1134/s1063783406070134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2003-10156-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036837796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364016040081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040971263", 
          "https://doi.org/10.1134/s0021364016040081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/217051a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042542652", 
          "https://doi.org/10.1038/217051a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnucmat.2003.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043174051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(01)00092-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047846222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2017.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054010714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.80.708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060457072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.80.708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060457072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.220101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.220101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.104108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060620385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.104108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060620385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.054107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060621877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.054107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060621877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.144304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.144304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.156102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.156102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15407/fm22.01.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067792843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22226/2410-3535-2016-1-82-85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069340422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufne.2016.02.037729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071210920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2016-70595-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074247504", 
          "https://doi.org/10.1140/epjb/e2016-70595-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2016-70595-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074247504", 
          "https://doi.org/10.1140/epjb/e2016-70595-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2017-70751-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084226488", 
          "https://doi.org/10.1140/epjb/e2017-70751-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2017-70751-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084226488", 
          "https://doi.org/10.1140/epjb/e2017-70751-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.035423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084604009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.035423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084604009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/833/1/012021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085553565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2017.08.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091424853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cocom.2017.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091881867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssr.201700298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092443588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1591/aab418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101415081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063776118030019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103267511", 
          "https://doi.org/10.1134/s1063776118030019"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Recently, the concept of supersonic N-crowdions was offered. In molecular dynamics simulations, they can be excited by initial kick of N neighboring atoms located in one close-packed atomic row along this row. In the present study, in 2D Morse crystal, we apply initial kick to M neighboring atoms located in neighboring close-packed atomic rows along these rows. This way, we initiate crowdion clusters called subsonic M-crowdions. It is well known that static 1-crowdion in 2D Morse lattice is unstable; as a result, the interstitial atom leaves the close-packed atomic row and becomes immobile. However, we show that 1-crowdion moving with sufficiently large subsonic velocity remains in the close-packed atomic row. Crowdion clusters with M equal to or greater than 2 appear to be stable even at rest, with growing M transforming into prismatic dislocation loops. It is important to note that stable subsonic M-crowdions (M > 1) remain mobile and they can carry interstitial atoms over long distances.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063776118120063", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6754677", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5052712", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "name": "Dynamics and Stability of Subsonic Crowdion Clusters in 2D Morse Crystal", 
    "pagination": "1009-1015", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7ede54bd57dcffc457a96ad5d51c87d756c696f1f466a36a33f786b7d6e58b50"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063776118120063"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112291460"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063776118120063", 
      "https://app.dimensions.ai/details/publication/pub.1112291460"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99815_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063776118120063"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063776118120063'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063776118120063'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063776118120063'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063776118120063'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063776118120063 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ne45a673c616e4f868757a1434705a983
4 schema:citation sg:pub.10.1038/217051a0
5 sg:pub.10.1038/srep05096
6 sg:pub.10.1134/s0021364016040081
7 sg:pub.10.1134/s1063776118030019
8 sg:pub.10.1134/s1063783406070134
9 sg:pub.10.1140/epjb/e2002-00302-y
10 sg:pub.10.1140/epjb/e2016-70142-3
11 sg:pub.10.1140/epjb/e2016-70145-0
12 sg:pub.10.1140/epjb/e2016-70595-2
13 sg:pub.10.1140/epjb/e2017-70751-2
14 https://doi.org/10.1002/pssr.201700298
15 https://doi.org/10.1016/0022-3697(95)00198-0
16 https://doi.org/10.1016/0375-9601(88)90714-1
17 https://doi.org/10.1016/1359-0189(88)90098-2
18 https://doi.org/10.1016/j.actamat.2003.12.037
19 https://doi.org/10.1016/j.cocom.2017.09.004
20 https://doi.org/10.1016/j.jnucmat.2003.08.006
21 https://doi.org/10.1016/j.jnucmat.2014.06.066
22 https://doi.org/10.1016/j.physleta.2010.03.018
23 https://doi.org/10.1016/j.physleta.2017.01.014
24 https://doi.org/10.1016/j.physleta.2017.08.057
25 https://doi.org/10.1016/s0375-9601(01)00092-5
26 https://doi.org/10.1080/0141861021000016793
27 https://doi.org/10.1080/095008399177345
28 https://doi.org/10.1080/14786430310001599388
29 https://doi.org/10.1088/1742-6596/833/1/012021
30 https://doi.org/10.1088/2053-1591/aab418
31 https://doi.org/10.1103/physrev.80.708
32 https://doi.org/10.1103/physrevb.66.220101
33 https://doi.org/10.1103/physrevb.75.104108
34 https://doi.org/10.1103/physrevb.76.054107
35 https://doi.org/10.1103/physrevb.84.144304
36 https://doi.org/10.1103/physrevb.95.035423
37 https://doi.org/10.1103/physreve.91.022912
38 https://doi.org/10.1103/physrevlett.90.156102
39 https://doi.org/10.1209/0295-5075/78/10004
40 https://doi.org/10.1209/epl/i2003-10156-5
41 https://doi.org/10.15407/fm22.01.051
42 https://doi.org/10.22226/2410-3535-2016-1-82-85
43 https://doi.org/10.3367/ufne.2016.02.037729
44 schema:datePublished 2018-12
45 schema:datePublishedReg 2018-12-01
46 schema:description Recently, the concept of supersonic N-crowdions was offered. In molecular dynamics simulations, they can be excited by initial kick of N neighboring atoms located in one close-packed atomic row along this row. In the present study, in 2D Morse crystal, we apply initial kick to M neighboring atoms located in neighboring close-packed atomic rows along these rows. This way, we initiate crowdion clusters called subsonic M-crowdions. It is well known that static 1-crowdion in 2D Morse lattice is unstable; as a result, the interstitial atom leaves the close-packed atomic row and becomes immobile. However, we show that 1-crowdion moving with sufficiently large subsonic velocity remains in the close-packed atomic row. Crowdion clusters with M equal to or greater than 2 appear to be stable even at rest, with growing M transforming into prismatic dislocation loops. It is important to note that stable subsonic M-crowdions (M > 1) remain mobile and they can carry interstitial atoms over long distances.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf Na975695252df4786b6877de92e884d0f
51 Nbc0a7fbd08db4b3191903cea83f9443a
52 sg:journal.1295107
53 schema:name Dynamics and Stability of Subsonic Crowdion Clusters in 2D Morse Crystal
54 schema:pagination 1009-1015
55 schema:productId N22754e4fadbb488cb6af4fe14b38db7f
56 N594427c3609547cbaaaf3cfb711df767
57 Nf2b7a53df1bf4482874d3b8b00b59311
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112291460
59 https://doi.org/10.1134/s1063776118120063
60 schema:sdDatePublished 2019-04-11T09:34
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N050c1c18a6be40a69b176d98f68c50f6
63 schema:url https://link.springer.com/10.1134%2FS1063776118120063
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N02d08b7359c54e628283b58c8bfea48e rdf:first N4d713216e95a4f78aaae18a4d36cad90
68 rdf:rest N3c651fa0f6f4423aa5c485681d12fef5
69 N050c1c18a6be40a69b176d98f68c50f6 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N1202f76500f74b56812290f1cf7a5a3d schema:name Saratov Chernyshevsky National Research State University, 410012, Saratov, Russia
72 rdf:type schema:Organization
73 N22754e4fadbb488cb6af4fe14b38db7f schema:name dimensions_id
74 schema:value pub.1112291460
75 rdf:type schema:PropertyValue
76 N29dbdebbf65d4c3da1db2b8c4399fb03 schema:affiliation https://www.grid.ac/institutes/grid.82861.35
77 schema:familyName Korznikova
78 schema:givenName E. A.
79 rdf:type schema:Person
80 N2beb43647e854a419b724a6a5b282545 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
81 schema:familyName Zhou
82 schema:givenName Kun
83 rdf:type schema:Person
84 N3c651fa0f6f4423aa5c485681d12fef5 rdf:first N5fe94db5031f4b15a3b37919860c4193
85 rdf:rest Ne4913a9b8c99413fb0c95addb69fabec
86 N41e56f391c8f42eb87028f9c1ac4ad85 schema:affiliation https://www.grid.ac/institutes/grid.82861.35
87 schema:familyName Fomin
88 schema:givenName S. Yu.
89 rdf:type schema:Person
90 N4d713216e95a4f78aaae18a4d36cad90 schema:affiliation N1202f76500f74b56812290f1cf7a5a3d
91 schema:familyName Shepelev
92 schema:givenName I. A.
93 rdf:type schema:Person
94 N594427c3609547cbaaaf3cfb711df767 schema:name readcube_id
95 schema:value 7ede54bd57dcffc457a96ad5d51c87d756c696f1f466a36a33f786b7d6e58b50
96 rdf:type schema:PropertyValue
97 N5fe94db5031f4b15a3b37919860c4193 schema:affiliation Ndec6c3e97d424c1ab1600ef995d4d598
98 schema:familyName Chetverikov
99 schema:givenName A. P.
100 rdf:type schema:Person
101 Na975695252df4786b6877de92e884d0f schema:volumeNumber 127
102 rdf:type schema:PublicationVolume
103 Nbc0a7fbd08db4b3191903cea83f9443a schema:issueNumber 6
104 rdf:type schema:PublicationIssue
105 Ncc1fac56ac294f8a8430fc7d2f1a89ae rdf:first N2beb43647e854a419b724a6a5b282545
106 rdf:rest rdf:nil
107 Nddbd2e0c110c4cbfa254228c8aca77f1 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
108 schema:familyName Dmitriev
109 schema:givenName S. V.
110 rdf:type schema:Person
111 Ndec6c3e97d424c1ab1600ef995d4d598 schema:name Saratov Chernyshevsky National Research State University, 410012, Saratov, Russia
112 rdf:type schema:Organization
113 Ne45a673c616e4f868757a1434705a983 rdf:first N29dbdebbf65d4c3da1db2b8c4399fb03
114 rdf:rest N02d08b7359c54e628283b58c8bfea48e
115 Ne4913a9b8c99413fb0c95addb69fabec rdf:first Nddbd2e0c110c4cbfa254228c8aca77f1
116 rdf:rest Nf5a418f4357f4fa189f91fae7f18307e
117 Nf2b7a53df1bf4482874d3b8b00b59311 schema:name doi
118 schema:value 10.1134/s1063776118120063
119 rdf:type schema:PropertyValue
120 Nf5a418f4357f4fa189f91fae7f18307e rdf:first N41e56f391c8f42eb87028f9c1ac4ad85
121 rdf:rest Ncc1fac56ac294f8a8430fc7d2f1a89ae
122 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
123 schema:name Physical Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
126 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
127 rdf:type schema:DefinedTerm
128 sg:grant.5052712 http://pending.schema.org/fundedItem sg:pub.10.1134/s1063776118120063
129 rdf:type schema:MonetaryGrant
130 sg:grant.6754677 http://pending.schema.org/fundedItem sg:pub.10.1134/s1063776118120063
131 rdf:type schema:MonetaryGrant
132 sg:journal.1295107 schema:issn 1063-7761
133 1090-6509
134 schema:name Journal of Experimental and Theoretical Physics
135 rdf:type schema:Periodical
136 sg:pub.10.1038/217051a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042542652
137 https://doi.org/10.1038/217051a0
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/srep05096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009541283
140 https://doi.org/10.1038/srep05096
141 rdf:type schema:CreativeWork
142 sg:pub.10.1134/s0021364016040081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040971263
143 https://doi.org/10.1134/s0021364016040081
144 rdf:type schema:CreativeWork
145 sg:pub.10.1134/s1063776118030019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103267511
146 https://doi.org/10.1134/s1063776118030019
147 rdf:type schema:CreativeWork
148 sg:pub.10.1134/s1063783406070134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035005640
149 https://doi.org/10.1134/s1063783406070134
150 rdf:type schema:CreativeWork
151 sg:pub.10.1140/epjb/e2002-00302-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010757035
152 https://doi.org/10.1140/epjb/e2002-00302-y
153 rdf:type schema:CreativeWork
154 sg:pub.10.1140/epjb/e2016-70142-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007740016
155 https://doi.org/10.1140/epjb/e2016-70142-3
156 rdf:type schema:CreativeWork
157 sg:pub.10.1140/epjb/e2016-70145-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023304133
158 https://doi.org/10.1140/epjb/e2016-70145-0
159 rdf:type schema:CreativeWork
160 sg:pub.10.1140/epjb/e2016-70595-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074247504
161 https://doi.org/10.1140/epjb/e2016-70595-2
162 rdf:type schema:CreativeWork
163 sg:pub.10.1140/epjb/e2017-70751-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084226488
164 https://doi.org/10.1140/epjb/e2017-70751-2
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/pssr.201700298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092443588
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0022-3697(95)00198-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031757513
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/0375-9601(88)90714-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010479396
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/1359-0189(88)90098-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023902114
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.actamat.2003.12.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020445153
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.cocom.2017.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091881867
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.jnucmat.2003.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043174051
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.jnucmat.2014.06.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021787620
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.physleta.2010.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015824894
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.physleta.2017.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054010714
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.physleta.2017.08.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091424853
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0375-9601(01)00092-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047846222
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1080/0141861021000016793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029805860
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1080/095008399177345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030025442
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1080/14786430310001599388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034624515
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1088/1742-6596/833/1/012021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085553565
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1088/2053-1591/aab418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101415081
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrev.80.708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060457072
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevb.66.220101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060605152
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevb.75.104108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060620385
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevb.76.054107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060621877
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevb.84.144304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060637067
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevb.95.035423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084604009
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physreve.91.022912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001801203
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.90.156102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826586
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1209/0295-5075/78/10004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009261282
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1209/epl/i2003-10156-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036837796
219 rdf:type schema:CreativeWork
220 https://doi.org/10.15407/fm22.01.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067792843
221 rdf:type schema:CreativeWork
222 https://doi.org/10.22226/2410-3535-2016-1-82-85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069340422
223 rdf:type schema:CreativeWork
224 https://doi.org/10.3367/ufne.2016.02.037729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071210920
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.59025.3b schema:alternateName Nanyang Technological University
227 schema:name School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.77602.34 schema:alternateName Tomsk State University
230 schema:name Institute for Metals Superplasticity Problems, Russian Academy of Sciences, 450001, Ufa, Russia
231 National Research Tomsk State University, 634050, Tomsk, Russia
232 Saratov Chernyshevsky National Research State University, 410012, Saratov, Russia
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.82861.35 schema:alternateName Ufa State Aviation Technical University
235 schema:name Institute for Metals Superplasticity Problems, Russian Academy of Sciences, 450001, Ufa, Russia
236 Saratov Chernyshevsky National Research State University, 410012, Saratov, Russia
237 Ufa State Aviation Technical University, 450008, Ufa, Russia
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...