Topological Defects in Helical Magnets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11

AUTHORS

T. Nattermann, V. L. Pokrovsky

ABSTRACT

Helical magnets which violated space inversion symmetry have rather peculiar topological defects. In isotropic helical magnets with exchange and Dzyaloshinskii–Moriya interactions, there are only three types of linear defects: ±π and 2π-disclinations. Weak crystal anysotropy suppresses linear defects on large scale. Instead, planar defects appear: domain walls that separate domains with different preferential directions of helical wavevectors. The appearance of such domain walls in the bulk helical magnets and some of their properties were predicted in the work [1]. In a recent work by an international team of experimenters and theorists [2], the existence of new types of domain walls on crystal faces of helical magnet FeGe was discovered. They have many features predicted by theory [1], but display also unexpected properties, one of them is the possibility of arbitrary angle between helical wavevectors. Depending on this angle, the domain walls observed in [2] can be divided in two classes: smooth and zig-zag. This article contains a mini-review of the existing theory and experiment. It also contains new results that explain why in a system with continuous orientation of helical wavevectors domain walls are possible. We discuss why and at what conditions smooth and zig-zag domain walls appear, analyze spin textures associated with helical domain walls, and find the dependence of their width on the angle between helical wavevectors. More... »

PAGES

922-932

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s106377611811016x

DOI

http://dx.doi.org/10.1134/s106377611811016x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111613959


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Institute for Theoretical Physics, University of Cologne, 50937, K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nattermann", 
        "givenName": "T.", 
        "id": "sg:person.0626650475.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626650475.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Landau Institute for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.436090.8", 
          "name": [
            "Department of Physics, Texas A&M University, TX 77843-4242, College Station, USA", 
            "Landau Institute for Theoretical Physics, Chernogolovka, 142432, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pokrovsky", 
        "givenName": "V. L.", 
        "id": "sg:person.012450351563.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450351563.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0953-8984/1/35/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002714870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/44/39/392001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025192850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025508742", 
          "https://doi.org/10.1038/nature02232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025508742", 
          "https://doi.org/10.1038/nature02232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01337791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039836449", 
          "https://doi.org/10.1007/bf01337791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.107203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040141142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.107203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040141142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6417(08)60077-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045576254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02780991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046680142", 
          "https://doi.org/10.1007/bf02780991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02780991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046680142", 
          "https://doi.org/10.1007/bf02780991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.r8889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046844989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.r8889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046844989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(94)90046-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049517393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(94)90046-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049517393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:0198100420100146100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056990376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphyslet:01976003706014900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057008669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.184402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060624861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.184402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060624861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1120639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062453232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/anphys/194812030137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085295627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/natrevmats.2017.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085994639", 
          "https://doi.org/10.1038/natrevmats.2017.31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511813467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098666741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/1439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098862715"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "Helical magnets which violated space inversion symmetry have rather peculiar topological defects. In isotropic helical magnets with exchange and Dzyaloshinskii\u2013Moriya interactions, there are only three types of linear defects: \u00b1\u03c0 and 2\u03c0-disclinations. Weak crystal anysotropy suppresses linear defects on large scale. Instead, planar defects appear: domain walls that separate domains with different preferential directions of helical wavevectors. The appearance of such domain walls in the bulk helical magnets and some of their properties were predicted in the work [1]. In a recent work by an international team of experimenters and theorists [2], the existence of new types of domain walls on crystal faces of helical magnet FeGe was discovered. They have many features predicted by theory [1], but display also unexpected properties, one of them is the possibility of arbitrary angle between helical wavevectors. Depending on this angle, the domain walls observed in [2] can be divided in two classes: smooth and zig-zag. This article contains a mini-review of the existing theory and experiment. It also contains new results that explain why in a system with continuous orientation of helical wavevectors domain walls are possible. We discuss why and at what conditions smooth and zig-zag domain walls appear, analyze spin textures associated with helical domain walls, and find the dependence of their width on the angle between helical wavevectors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s106377611811016x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "name": "Topological Defects in Helical Magnets", 
    "pagination": "922-932", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0ef6a1d035acd61492bfc2ed8f5571862f1a82fd20f741f8c1aa527651e4afde"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s106377611811016x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111613959"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s106377611811016x", 
      "https://app.dimensions.ai/details/publication/pub.1111613959"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100805_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS106377611811016X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s106377611811016x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s106377611811016x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s106377611811016x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s106377611811016x'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s106377611811016x schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N728d713980ca4d7c823b3d036749a0c8
4 schema:citation sg:pub.10.1007/bf01337791
5 sg:pub.10.1007/bf02780991
6 sg:pub.10.1038/natrevmats.2017.31
7 sg:pub.10.1038/nature02232
8 sg:pub.10.1038/nature09124
9 https://doi.org/10.1016/0029-5582(62)90775-7
10 https://doi.org/10.1016/0304-8853(94)90046-9
11 https://doi.org/10.1016/s0079-6417(08)60077-3
12 https://doi.org/10.1017/cbo9780511813467
13 https://doi.org/10.1051/anphys/194812030137
14 https://doi.org/10.1051/jphys:0198100420100146100
15 https://doi.org/10.1051/jphyslet:01976003706014900
16 https://doi.org/10.1088/0022-3727/44/39/392001
17 https://doi.org/10.1088/0953-8984/1/35/010
18 https://doi.org/10.1103/physrevb.58.r8889
19 https://doi.org/10.1103/physrevb.77.184402
20 https://doi.org/10.1103/physrevlett.108.107203
21 https://doi.org/10.1126/science.1120639
22 https://doi.org/10.1126/science.1166767
23 https://doi.org/10.1142/1439
24 schema:datePublished 2018-11
25 schema:datePublishedReg 2018-11-01
26 schema:description Helical magnets which violated space inversion symmetry have rather peculiar topological defects. In isotropic helical magnets with exchange and Dzyaloshinskii–Moriya interactions, there are only three types of linear defects: ±π and 2π-disclinations. Weak crystal anysotropy suppresses linear defects on large scale. Instead, planar defects appear: domain walls that separate domains with different preferential directions of helical wavevectors. The appearance of such domain walls in the bulk helical magnets and some of their properties were predicted in the work [1]. In a recent work by an international team of experimenters and theorists [2], the existence of new types of domain walls on crystal faces of helical magnet FeGe was discovered. They have many features predicted by theory [1], but display also unexpected properties, one of them is the possibility of arbitrary angle between helical wavevectors. Depending on this angle, the domain walls observed in [2] can be divided in two classes: smooth and zig-zag. This article contains a mini-review of the existing theory and experiment. It also contains new results that explain why in a system with continuous orientation of helical wavevectors domain walls are possible. We discuss why and at what conditions smooth and zig-zag domain walls appear, analyze spin textures associated with helical domain walls, and find the dependence of their width on the angle between helical wavevectors.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf Nc8b3073a3065492a8cc363bbe2744030
31 Nd82937b4a96f4fdab6d85af663120bb4
32 sg:journal.1295107
33 schema:name Topological Defects in Helical Magnets
34 schema:pagination 922-932
35 schema:productId N274608c9e4bd4495b5f1e9c0668754ae
36 N45a48dac6e114d15acdd88e201baa73a
37 Nb28055eb0da7436ebd7666c4fd31bd49
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111613959
39 https://doi.org/10.1134/s106377611811016x
40 schema:sdDatePublished 2019-04-11T08:56
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nb1b68d8d26d042f3862be54ca6c97465
43 schema:url https://link.springer.com/10.1134%2FS106377611811016X
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N274608c9e4bd4495b5f1e9c0668754ae schema:name dimensions_id
48 schema:value pub.1111613959
49 rdf:type schema:PropertyValue
50 N45a48dac6e114d15acdd88e201baa73a schema:name readcube_id
51 schema:value 0ef6a1d035acd61492bfc2ed8f5571862f1a82fd20f741f8c1aa527651e4afde
52 rdf:type schema:PropertyValue
53 N6a1f95664eaa45ea808842149d9e3db8 rdf:first sg:person.012450351563.03
54 rdf:rest rdf:nil
55 N728d713980ca4d7c823b3d036749a0c8 rdf:first sg:person.0626650475.59
56 rdf:rest N6a1f95664eaa45ea808842149d9e3db8
57 Nb1b68d8d26d042f3862be54ca6c97465 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nb28055eb0da7436ebd7666c4fd31bd49 schema:name doi
60 schema:value 10.1134/s106377611811016x
61 rdf:type schema:PropertyValue
62 Nc8b3073a3065492a8cc363bbe2744030 schema:volumeNumber 127
63 rdf:type schema:PublicationVolume
64 Nd82937b4a96f4fdab6d85af663120bb4 schema:issueNumber 5
65 rdf:type schema:PublicationIssue
66 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
67 schema:name Biological Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
70 schema:name Biochemistry and Cell Biology
71 rdf:type schema:DefinedTerm
72 sg:journal.1295107 schema:issn 1063-7761
73 1090-6509
74 schema:name Journal of Experimental and Theoretical Physics
75 rdf:type schema:Periodical
76 sg:person.012450351563.03 schema:affiliation https://www.grid.ac/institutes/grid.436090.8
77 schema:familyName Pokrovsky
78 schema:givenName V. L.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450351563.03
80 rdf:type schema:Person
81 sg:person.0626650475.59 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
82 schema:familyName Nattermann
83 schema:givenName T.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626650475.59
85 rdf:type schema:Person
86 sg:pub.10.1007/bf01337791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039836449
87 https://doi.org/10.1007/bf01337791
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf02780991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046680142
90 https://doi.org/10.1007/bf02780991
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/natrevmats.2017.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085994639
93 https://doi.org/10.1038/natrevmats.2017.31
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/nature02232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025508742
96 https://doi.org/10.1038/nature02232
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
99 https://doi.org/10.1038/nature09124
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0029-5582(62)90775-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019864545
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0304-8853(94)90046-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049517393
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0079-6417(08)60077-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045576254
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1017/cbo9780511813467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098666741
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1051/anphys/194812030137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085295627
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1051/jphys:0198100420100146100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056990376
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1051/jphyslet:01976003706014900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057008669
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1088/0022-3727/44/39/392001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025192850
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1088/0953-8984/1/35/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002714870
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevb.58.r8889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046844989
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevb.77.184402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060624861
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevlett.108.107203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040141142
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1126/science.1120639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453232
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1142/1439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098862715
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.436090.8 schema:alternateName Landau Institute for Theoretical Physics
132 schema:name Department of Physics, Texas A&M University, TX 77843-4242, College Station, USA
133 Landau Institute for Theoretical Physics, Chernogolovka, 142432, Moscow oblast, Russia
134 rdf:type schema:Organization
135 https://www.grid.ac/institutes/grid.6190.e schema:alternateName University of Cologne
136 schema:name Institute for Theoretical Physics, University of Cologne, 50937, Köln, Germany
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...