Compressibility, Electrical Conductivity, and Crystallization of Glassy Selenium at a High Pressure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

O. B. Tsiok, V. V. Brazhkin

ABSTRACT

The volume and the electrical resistivity of glassy selenium (g-Se) are precisely measured at a high hydrostatic pressure up to 9 GPa. The bulk modulus at normal pressure (B = 9.05 ± 0.15 GPa) and its baric derivative ( = 6.4 ± 0.2) fall on the general concentration dependence of the properties of Se–Ge glasses. The bulk modulus is found to behave substantially nonlinearly in the pressure range P < 3 GPa, and this behavior is not related to glass density relaxation (which is absent in this pressure range). The electrical resistivity of g-Se decreases almost exponentially with increasing pressure and reaches 20 Ω cm at 8.75 GPa. The inelastic behavior and weak volume relaxation in g-Se begin at a pressure above 3.5 GPa. Both the volume and the logarithm of electrical resistivity exhibit noticeable (logarithmic in time) relaxation at above 8 GPa. The detected volume hysteresis (1%) and significant (two orders of magnitude) electrical resistivity hysteresis are associated with the pressure-induced structural changes in the glass. They cannot be explained by partial glass crystallization, since no crystalline phase impurity was detected right after experiments. A noticeable (about 1.5%) crystalline phase impurity appears in a sample only after long-term (1 day) storage at a pressure above 8 GPa. Moreover, the crystallization kinetics of g-Se is studied under normal conditions after the action of a high pressure. More... »

PAGES

1118-1124

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063776118100217

DOI

http://dx.doi.org/10.1134/s1063776118100217

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112291456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Vereshchagin Institute for High-Pressure Physics, 108840, Troitsk, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsiok", 
        "givenName": "O. B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Vereshchagin Institute for High-Pressure Physics, 108840, Troitsk, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brazhkin", 
        "givenName": "V. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0806857105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001751170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364009050063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005282849", 
          "https://doi.org/10.1134/s0021364009050063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364009050063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005282849", 
          "https://doi.org/10.1134/s0021364009050063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.2220570215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014228965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02747579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020348662", 
          "https://doi.org/10.1007/bf02747579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02747579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020348662", 
          "https://doi.org/10.1007/bf02747579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063776116060108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032171203", 
          "https://doi.org/10.1134/s1063776116060108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063776116060108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032171203", 
          "https://doi.org/10.1134/s1063776116060108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.174201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037439401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.174201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037439401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.174201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037439401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08957959208201471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046732403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08957950412331298761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051348718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1731798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057798186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.322131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057920275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.324552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057923945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.60.351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060451780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.60.351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060451780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.42.11245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.42.11245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.64.4766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063115500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063776117080155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092332142", 
          "https://doi.org/10.1134/s1063776117080155"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The volume and the electrical resistivity of glassy selenium (g-Se) are precisely measured at a high hydrostatic pressure up to 9 GPa. The bulk modulus at normal pressure (B = 9.05 \u00b1 0.15 GPa) and its baric derivative ( = 6.4 \u00b1 0.2) fall on the general concentration dependence of the properties of Se\u2013Ge glasses. The bulk modulus is found to behave substantially nonlinearly in the pressure range P < 3 GPa, and this behavior is not related to glass density relaxation (which is absent in this pressure range). The electrical resistivity of g-Se decreases almost exponentially with increasing pressure and reaches 20 \u03a9 cm at 8.75 GPa. The inelastic behavior and weak volume relaxation in g-Se begin at a pressure above 3.5 GPa. Both the volume and the logarithm of electrical resistivity exhibit noticeable (logarithmic in time) relaxation at above 8 GPa. The detected volume hysteresis (1%) and significant (two orders of magnitude) electrical resistivity hysteresis are associated with the pressure-induced structural changes in the glass. They cannot be explained by partial glass crystallization, since no crystalline phase impurity was detected right after experiments. A noticeable (about 1.5%) crystalline phase impurity appears in a sample only after long-term (1 day) storage at a pressure above 8 GPa. Moreover, the crystallization kinetics of g-Se is studied under normal conditions after the action of a high pressure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063776118100217", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4895851", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "name": "Compressibility, Electrical Conductivity, and Crystallization of Glassy Selenium at a High Pressure", 
    "pagination": "1118-1124", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7071a67a3813d12eaf562bd0524dbe70c5273725bde23226ae6ac7e1cb6a8c03"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063776118100217"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112291456"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063776118100217", 
      "https://app.dimensions.ai/details/publication/pub.1112291456"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99803_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063776118100217"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063776118100217'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063776118100217'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063776118100217'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063776118100217'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063776118100217 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N451cc832a2004a2a93fb477c834854d1
4 schema:citation sg:pub.10.1007/bf02747579
5 sg:pub.10.1134/s0021364009050063
6 sg:pub.10.1134/s1063776116060108
7 sg:pub.10.1134/s1063776117080155
8 https://doi.org/10.1002/pssb.2220570215
9 https://doi.org/10.1063/1.1731798
10 https://doi.org/10.1063/1.322131
11 https://doi.org/10.1063/1.324552
12 https://doi.org/10.1073/pnas.0806857105
13 https://doi.org/10.1080/08957950412331298761
14 https://doi.org/10.1080/08957959208201471
15 https://doi.org/10.1103/physrev.60.351
16 https://doi.org/10.1103/physrevb.42.11245
17 https://doi.org/10.1103/physrevb.71.174201
18 https://doi.org/10.1103/physrevlett.80.999
19 https://doi.org/10.1143/jpsj.64.4766
20 schema:datePublished 2018-12
21 schema:datePublishedReg 2018-12-01
22 schema:description The volume and the electrical resistivity of glassy selenium (g-Se) are precisely measured at a high hydrostatic pressure up to 9 GPa. The bulk modulus at normal pressure (B = 9.05 ± 0.15 GPa) and its baric derivative ( = 6.4 ± 0.2) fall on the general concentration dependence of the properties of Se–Ge glasses. The bulk modulus is found to behave substantially nonlinearly in the pressure range P < 3 GPa, and this behavior is not related to glass density relaxation (which is absent in this pressure range). The electrical resistivity of g-Se decreases almost exponentially with increasing pressure and reaches 20 Ω cm at 8.75 GPa. The inelastic behavior and weak volume relaxation in g-Se begin at a pressure above 3.5 GPa. Both the volume and the logarithm of electrical resistivity exhibit noticeable (logarithmic in time) relaxation at above 8 GPa. The detected volume hysteresis (1%) and significant (two orders of magnitude) electrical resistivity hysteresis are associated with the pressure-induced structural changes in the glass. They cannot be explained by partial glass crystallization, since no crystalline phase impurity was detected right after experiments. A noticeable (about 1.5%) crystalline phase impurity appears in a sample only after long-term (1 day) storage at a pressure above 8 GPa. Moreover, the crystallization kinetics of g-Se is studied under normal conditions after the action of a high pressure.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N44a41927e34e4a64b1c03f6957b37d73
27 Nc245546f06e9402282d638da6d188e79
28 sg:journal.1295107
29 schema:name Compressibility, Electrical Conductivity, and Crystallization of Glassy Selenium at a High Pressure
30 schema:pagination 1118-1124
31 schema:productId N04777878bf874fed8c8f00e28877ad23
32 N3ca4623f9865402ea7b06d51a90eb974
33 N4b43ac0e9983493db3b7d52953832792
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112291456
35 https://doi.org/10.1134/s1063776118100217
36 schema:sdDatePublished 2019-04-11T09:31
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N68386eeff19e4a9793a8840608d280be
39 schema:url https://link.springer.com/10.1134%2FS1063776118100217
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N04777878bf874fed8c8f00e28877ad23 schema:name readcube_id
44 schema:value 7071a67a3813d12eaf562bd0524dbe70c5273725bde23226ae6ac7e1cb6a8c03
45 rdf:type schema:PropertyValue
46 N20710b1228f443b8a1c5805a745e1f4a schema:name Vereshchagin Institute for High-Pressure Physics, 108840, Troitsk, Moscow, Russia
47 rdf:type schema:Organization
48 N3ca4623f9865402ea7b06d51a90eb974 schema:name doi
49 schema:value 10.1134/s1063776118100217
50 rdf:type schema:PropertyValue
51 N44a41927e34e4a64b1c03f6957b37d73 schema:volumeNumber 127
52 rdf:type schema:PublicationVolume
53 N451cc832a2004a2a93fb477c834854d1 rdf:first N85b5b81b17a0455a860e3a74c3333d71
54 rdf:rest N6e7da1f462e04b6aa7c1aaf4246ec224
55 N4b43ac0e9983493db3b7d52953832792 schema:name dimensions_id
56 schema:value pub.1112291456
57 rdf:type schema:PropertyValue
58 N68386eeff19e4a9793a8840608d280be schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N6c334c3f63094525919a497061dbf5d1 schema:affiliation N20710b1228f443b8a1c5805a745e1f4a
61 schema:familyName Brazhkin
62 schema:givenName V. V.
63 rdf:type schema:Person
64 N6e7da1f462e04b6aa7c1aaf4246ec224 rdf:first N6c334c3f63094525919a497061dbf5d1
65 rdf:rest rdf:nil
66 N85b5b81b17a0455a860e3a74c3333d71 schema:affiliation Nb233f32b1d95412081a21a0ee3c003ea
67 schema:familyName Tsiok
68 schema:givenName O. B.
69 rdf:type schema:Person
70 Nb233f32b1d95412081a21a0ee3c003ea schema:name Vereshchagin Institute for High-Pressure Physics, 108840, Troitsk, Moscow, Russia
71 rdf:type schema:Organization
72 Nc245546f06e9402282d638da6d188e79 schema:issueNumber 6
73 rdf:type schema:PublicationIssue
74 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
75 schema:name Medical and Health Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
78 schema:name Neurosciences
79 rdf:type schema:DefinedTerm
80 sg:grant.4895851 http://pending.schema.org/fundedItem sg:pub.10.1134/s1063776118100217
81 rdf:type schema:MonetaryGrant
82 sg:journal.1295107 schema:issn 1063-7761
83 1090-6509
84 schema:name Journal of Experimental and Theoretical Physics
85 rdf:type schema:Periodical
86 sg:pub.10.1007/bf02747579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020348662
87 https://doi.org/10.1007/bf02747579
88 rdf:type schema:CreativeWork
89 sg:pub.10.1134/s0021364009050063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005282849
90 https://doi.org/10.1134/s0021364009050063
91 rdf:type schema:CreativeWork
92 sg:pub.10.1134/s1063776116060108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032171203
93 https://doi.org/10.1134/s1063776116060108
94 rdf:type schema:CreativeWork
95 sg:pub.10.1134/s1063776117080155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092332142
96 https://doi.org/10.1134/s1063776117080155
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1002/pssb.2220570215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014228965
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1063/1.1731798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057798186
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1063/1.322131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057920275
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1063/1.324552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057923945
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1073/pnas.0806857105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001751170
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1080/08957950412331298761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051348718
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1080/08957959208201471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046732403
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrev.60.351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060451780
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevb.42.11245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060554864
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevb.71.174201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037439401
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevlett.80.999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817839
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1143/jpsj.64.4766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063115500
121 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...