The Second Boundaries of Stability Zones and the Angular Diagrams of Conductivity for Metals Having Complicated Fermi Surfaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

A. Ya. Maltsev

ABSTRACT

We consider some general aspects of dependence of magneto-conductivity on a magnetic field in metals having complicated Fermi surfaces. As it is well known, a nontrivial behavior of conductivity in metals in strong magnetic fields is connected usually with appearance of non-closed quasiclassical electron trajectories on the Fermi surface in a magnetic field. The structure of the electron trajectories depends strongly on the direction of the magnetic field and usually the greatest interest is caused by open trajectories that are stable to small rotations of the direction of B. The geometry of the corresponding Stability Zones on the angular diagram in the space of directions of B represents a very important characteristic of the electron spectrum in a metal linking the parameters of the spectrum to the experimental data. Here we will consider some very general features inherent in the angular diagrams of metals with Fermi surfaces of the most arbitrary form. In particular, we will show here that any Stability Zone actually has a second boundary, restricting a larger region with a certain behavior of conductivity. Besides that, we shall discuss here general questions of complexity of the angular diagrams for the conductivity and propose a theoretical scheme for dividing the angular diagrams into “simple” and “complex” diagrams. The proposed scheme will in fact also be closely related to behavior of the Hall conductivity in a metal in strong magnetic fields. In conclusion, we will also discuss the relationship of the questions under consideration to the general features of an (abstract) angular diagram describing the behavior of quasiclassical electron trajectories at all energy levels in the conduction band. More... »

PAGES

1087-1111

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063776118100187

DOI

http://dx.doi.org/10.1134/s1063776118100187

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112291455


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Landau Institute for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.436090.8", 
          "name": [
            "Landau Institute for Theoretical Physics, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maltsev", 
        "givenName": "A. Ya.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/10586458.2006.10128949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001169385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(02)00275-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010316557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(02)00275-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010316557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu1998v041n03abeh000373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016794193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-016-0650-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019184674", 
          "https://doi.org/10.1007/s00222-016-0650-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:joss.0000019835.01125.92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020366020", 
          "https://doi.org/10.1023/b:joss.0000019835.01125.92"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.567102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028377308", 
          "https://doi.org/10.1134/1.567102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10711-008-9298-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037926547", 
          "https://doi.org/10.1007/s10711-008-9298-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.558398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042898889", 
          "https://doi.org/10.1134/1.558398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10455-012-9344-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049774835", 
          "https://doi.org/10.1007/s10455-012-9344-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385797086215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053998007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu1960v002n06abeh003183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058168967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu1963v005n06abeh003463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058169157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu1966v008n06abeh002922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058169343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1982v037n05abeh004020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058194984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1984v039n05abeh004091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058195274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1992v047n03abeh000901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058196294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1999v054n01abeh000116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058197131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm2000v055n01abeh000252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058197264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm2007v062n05abeh004461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058198058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mosc/246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059344246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/rm669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072370401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.1517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073137206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/bsmf.2722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083661801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063776117040148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086119308", 
          "https://doi.org/10.1134/s1063776117040148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139644075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098714332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s106377611711005x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099704241", 
          "https://doi.org/10.1134/s106377611711005x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "We consider some general aspects of dependence of magneto-conductivity on a magnetic field in metals having complicated Fermi surfaces. As it is well known, a nontrivial behavior of conductivity in metals in strong magnetic fields is connected usually with appearance of non-closed quasiclassical electron trajectories on the Fermi surface in a magnetic field. The structure of the electron trajectories depends strongly on the direction of the magnetic field and usually the greatest interest is caused by open trajectories that are stable to small rotations of the direction of B. The geometry of the corresponding Stability Zones on the angular diagram in the space of directions of B represents a very important characteristic of the electron spectrum in a metal linking the parameters of the spectrum to the experimental data. Here we will consider some very general features inherent in the angular diagrams of metals with Fermi surfaces of the most arbitrary form. In particular, we will show here that any Stability Zone actually has a second boundary, restricting a larger region with a certain behavior of conductivity. Besides that, we shall discuss here general questions of complexity of the angular diagrams for the conductivity and propose a theoretical scheme for dividing the angular diagrams into \u201csimple\u201d and \u201ccomplex\u201d diagrams. The proposed scheme will in fact also be closely related to behavior of the Hall conductivity in a metal in strong magnetic fields. In conclusion, we will also discuss the relationship of the questions under consideration to the general features of an (abstract) angular diagram describing the behavior of quasiclassical electron trajectories at all energy levels in the conduction band.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063776118100187", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "name": "The Second Boundaries of Stability Zones and the Angular Diagrams of Conductivity for Metals Having Complicated Fermi Surfaces", 
    "pagination": "1087-1111", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f011609f2f66973d921d4d56bd9e3b4c027cb3ae3f21fd7dc52902928064ffbf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063776118100187"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112291455"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063776118100187", 
      "https://app.dimensions.ai/details/publication/pub.1112291455"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99802_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063776118100187"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063776118100187'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063776118100187'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063776118100187'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063776118100187'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063776118100187 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N5e0a6b515e8f481eb773af956239ed51
4 schema:citation sg:pub.10.1007/s00222-016-0650-z
5 sg:pub.10.1007/s10455-012-9344-y
6 sg:pub.10.1007/s10711-008-9298-1
7 sg:pub.10.1023/b:joss.0000019835.01125.92
8 sg:pub.10.1134/1.558398
9 sg:pub.10.1134/1.567102
10 sg:pub.10.1134/s1063776117040148
11 sg:pub.10.1134/s106377611711005x
12 https://doi.org/10.1016/s0370-1573(02)00275-2
13 https://doi.org/10.1017/cbo9781139644075
14 https://doi.org/10.1017/s0143385797086215
15 https://doi.org/10.1070/pu1960v002n06abeh003183
16 https://doi.org/10.1070/pu1963v005n06abeh003463
17 https://doi.org/10.1070/pu1966v008n06abeh002922
18 https://doi.org/10.1070/pu1998v041n03abeh000373
19 https://doi.org/10.1070/rm1982v037n05abeh004020
20 https://doi.org/10.1070/rm1984v039n05abeh004091
21 https://doi.org/10.1070/rm1992v047n03abeh000901
22 https://doi.org/10.1070/rm1999v054n01abeh000116
23 https://doi.org/10.1070/rm2000v055n01abeh000252
24 https://doi.org/10.1070/rm2007v062n05abeh004461
25 https://doi.org/10.1080/10586458.2006.10128949
26 https://doi.org/10.1090/mosc/246
27 https://doi.org/10.24033/bsmf.2722
28 https://doi.org/10.4213/rm669
29 https://doi.org/10.5802/aif.1517
30 schema:datePublished 2018-12
31 schema:datePublishedReg 2018-12-01
32 schema:description We consider some general aspects of dependence of magneto-conductivity on a magnetic field in metals having complicated Fermi surfaces. As it is well known, a nontrivial behavior of conductivity in metals in strong magnetic fields is connected usually with appearance of non-closed quasiclassical electron trajectories on the Fermi surface in a magnetic field. The structure of the electron trajectories depends strongly on the direction of the magnetic field and usually the greatest interest is caused by open trajectories that are stable to small rotations of the direction of B. The geometry of the corresponding Stability Zones on the angular diagram in the space of directions of B represents a very important characteristic of the electron spectrum in a metal linking the parameters of the spectrum to the experimental data. Here we will consider some very general features inherent in the angular diagrams of metals with Fermi surfaces of the most arbitrary form. In particular, we will show here that any Stability Zone actually has a second boundary, restricting a larger region with a certain behavior of conductivity. Besides that, we shall discuss here general questions of complexity of the angular diagrams for the conductivity and propose a theoretical scheme for dividing the angular diagrams into “simple” and “complex” diagrams. The proposed scheme will in fact also be closely related to behavior of the Hall conductivity in a metal in strong magnetic fields. In conclusion, we will also discuss the relationship of the questions under consideration to the general features of an (abstract) angular diagram describing the behavior of quasiclassical electron trajectories at all energy levels in the conduction band.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N534337075e4b4b27a592f23e4fa3ef57
37 N79564ad14ff2435da9348a896e10df2e
38 sg:journal.1295107
39 schema:name The Second Boundaries of Stability Zones and the Angular Diagrams of Conductivity for Metals Having Complicated Fermi Surfaces
40 schema:pagination 1087-1111
41 schema:productId N33d31eca9cee44f8b7489c2923e656b4
42 N83bc1a507fee484ab565c61ffcccdb6c
43 Nf3fc802f8c9f4e11972bf93130f7e7c2
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112291455
45 https://doi.org/10.1134/s1063776118100187
46 schema:sdDatePublished 2019-04-11T09:30
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nbbba46bee07643afac34553ff878e08d
49 schema:url https://link.springer.com/10.1134%2FS1063776118100187
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N33d31eca9cee44f8b7489c2923e656b4 schema:name readcube_id
54 schema:value f011609f2f66973d921d4d56bd9e3b4c027cb3ae3f21fd7dc52902928064ffbf
55 rdf:type schema:PropertyValue
56 N52f86e24573a414192cbf88f83dd5d80 schema:affiliation https://www.grid.ac/institutes/grid.436090.8
57 schema:familyName Maltsev
58 schema:givenName A. Ya.
59 rdf:type schema:Person
60 N534337075e4b4b27a592f23e4fa3ef57 schema:volumeNumber 127
61 rdf:type schema:PublicationVolume
62 N5e0a6b515e8f481eb773af956239ed51 rdf:first N52f86e24573a414192cbf88f83dd5d80
63 rdf:rest rdf:nil
64 N79564ad14ff2435da9348a896e10df2e schema:issueNumber 6
65 rdf:type schema:PublicationIssue
66 N83bc1a507fee484ab565c61ffcccdb6c schema:name dimensions_id
67 schema:value pub.1112291455
68 rdf:type schema:PropertyValue
69 Nbbba46bee07643afac34553ff878e08d schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nf3fc802f8c9f4e11972bf93130f7e7c2 schema:name doi
72 schema:value 10.1134/s1063776118100187
73 rdf:type schema:PropertyValue
74 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
75 schema:name Engineering
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
78 schema:name Materials Engineering
79 rdf:type schema:DefinedTerm
80 sg:journal.1295107 schema:issn 1063-7761
81 1090-6509
82 schema:name Journal of Experimental and Theoretical Physics
83 rdf:type schema:Periodical
84 sg:pub.10.1007/s00222-016-0650-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019184674
85 https://doi.org/10.1007/s00222-016-0650-z
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s10455-012-9344-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049774835
88 https://doi.org/10.1007/s10455-012-9344-y
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s10711-008-9298-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037926547
91 https://doi.org/10.1007/s10711-008-9298-1
92 rdf:type schema:CreativeWork
93 sg:pub.10.1023/b:joss.0000019835.01125.92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020366020
94 https://doi.org/10.1023/b:joss.0000019835.01125.92
95 rdf:type schema:CreativeWork
96 sg:pub.10.1134/1.558398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042898889
97 https://doi.org/10.1134/1.558398
98 rdf:type schema:CreativeWork
99 sg:pub.10.1134/1.567102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028377308
100 https://doi.org/10.1134/1.567102
101 rdf:type schema:CreativeWork
102 sg:pub.10.1134/s1063776117040148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086119308
103 https://doi.org/10.1134/s1063776117040148
104 rdf:type schema:CreativeWork
105 sg:pub.10.1134/s106377611711005x schema:sameAs https://app.dimensions.ai/details/publication/pub.1099704241
106 https://doi.org/10.1134/s106377611711005x
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0370-1573(02)00275-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010316557
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1017/cbo9781139644075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098714332
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1017/s0143385797086215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053998007
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1070/pu1960v002n06abeh003183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058168967
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1070/pu1963v005n06abeh003463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058169157
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1070/pu1966v008n06abeh002922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058169343
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1070/pu1998v041n03abeh000373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016794193
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1070/rm1982v037n05abeh004020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058194984
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1070/rm1984v039n05abeh004091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058195274
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1070/rm1992v047n03abeh000901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058196294
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1070/rm1999v054n01abeh000116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058197131
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1070/rm2000v055n01abeh000252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058197264
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1070/rm2007v062n05abeh004461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058198058
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1080/10586458.2006.10128949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001169385
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1090/mosc/246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059344246
137 rdf:type schema:CreativeWork
138 https://doi.org/10.24033/bsmf.2722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083661801
139 rdf:type schema:CreativeWork
140 https://doi.org/10.4213/rm669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072370401
141 rdf:type schema:CreativeWork
142 https://doi.org/10.5802/aif.1517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073137206
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.436090.8 schema:alternateName Landau Institute for Theoretical Physics
145 schema:name Landau Institute for Theoretical Physics, 142432, Chernogolovka, Moscow oblast, Russia
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...