Coherent spin dynamics of carriers in ferromagnetic semiconductor heterostructures with an Mn δ layer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-09

AUTHORS

S. V. Zaitsev, I. A. Akimov, L. Langer, Yu. A. Danilov, M. V. Dorokhin, B. N. Zvonkov, D. R. Yakovlev, M. Bayer

ABSTRACT

The coherent spin dynamics of carriers in the heterostructures that contain an InGaAs/GaAs quantum well (QW) and an Mn δ layer, which are separated by a narrow GaAs spacer 2–10 nm thick, is comprehensively studied by the magnetooptical Kerr effect method at a picosecond time resolution. The exchange interaction of photoexcited electrons in QW with the ferromagnetic Mn δ layer manifests itself in magnetic-field and temperature dependences of the Larmor precession frequency of electron spins and is found to be very weak (several microelectron volts). Two nonoscillating components related to holes exist apart from an electron contribution to the Kerr signal of polarization plane rotation. At the initial stage, a fast relaxation process, which corresponds to the spin relaxation of free photoexcited holes, is detected in the structures with a wide spacer. The second component is caused by the further spin dephasing of energyrelaxed holes, which are localized at strong QW potential fluctuations in the structures under study. The decay of all contributions to the Kerr signal in time increases substantially when the spacer thickness decreases, which correlates with the enhancement of nonradiative recombination in QW. More... »

PAGES

420-428

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s106377611607013x

DOI

http://dx.doi.org/10.1134/s106377611607013x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045378794


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418975.6", 
          "name": [
            "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaitsev", 
        "givenName": "S. V.", 
        "id": "sg:person.011610151633.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Experimentelle Physik 2, Technische Universit\u00e4t Dortmund, D-44227, Dortmund, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5675.1", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
            "Experimentelle Physik 2, Technische Universit\u00e4t Dortmund, D-44227, Dortmund, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akimov", 
        "givenName": "I. A.", 
        "id": "sg:person.01050126701.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050126701.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Experimentelle Physik 2, Technische Universit\u00e4t Dortmund, D-44227, Dortmund, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5675.1", 
          "name": [
            "Experimentelle Physik 2, Technische Universit\u00e4t Dortmund, D-44227, Dortmund, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langer", 
        "givenName": "L.", 
        "id": "sg:person.0751365475.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751365475.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nizhny Novgorod Research Physicotechnical Institute, Lobachevskii State University, pr. Gagarina 23/5, 603600, Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/grid.28171.3d", 
          "name": [
            "Nizhny Novgorod Research Physicotechnical Institute, Lobachevskii State University, pr. Gagarina 23/5, 603600, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danilov", 
        "givenName": "Yu. A.", 
        "id": "sg:person.012366717075.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366717075.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nizhny Novgorod Research Physicotechnical Institute, Lobachevskii State University, pr. Gagarina 23/5, 603600, Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/grid.28171.3d", 
          "name": [
            "Nizhny Novgorod Research Physicotechnical Institute, Lobachevskii State University, pr. Gagarina 23/5, 603600, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dorokhin", 
        "givenName": "M. V.", 
        "id": "sg:person.013277464553.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013277464553.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nizhny Novgorod Research Physicotechnical Institute, Lobachevskii State University, pr. Gagarina 23/5, 603600, Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/grid.28171.3d", 
          "name": [
            "Nizhny Novgorod Research Physicotechnical Institute, Lobachevskii State University, pr. Gagarina 23/5, 603600, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zvonkov", 
        "givenName": "B. N.", 
        "id": "sg:person.01063636363.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063636363.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Experimentelle Physik 2, Technische Universit\u00e4t Dortmund, D-44227, Dortmund, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5675.1", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
            "Experimentelle Physik 2, Technische Universit\u00e4t Dortmund, D-44227, Dortmund, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yakovlev", 
        "givenName": "D. R.", 
        "id": "sg:person.015630456362.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015630456362.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Experimentelle Physik 2, Technische Universit\u00e4t Dortmund, D-44227, Dortmund, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5675.1", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
            "Experimentelle Physik 2, Technische Universit\u00e4t Dortmund, D-44227, Dortmund, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bayer", 
        "givenName": "M.", 
        "id": "sg:person.0622636442.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622636442.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s106377611106001x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041721179", 
          "https://doi.org/10.1134/s106377611106001x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063776109080159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049966737", 
          "https://doi.org/10.1134/s1063776109080159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009841275", 
          "https://doi.org/10.1038/nmat2898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364009220056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017667259", 
          "https://doi.org/10.1134/s0021364009220056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78820-1_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008352826", 
          "https://doi.org/10.1007/978-3-540-78820-1_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030270405", 
          "https://doi.org/10.1038/ncomms1957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1641485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053432496", 
          "https://doi.org/10.1134/1.1641485"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "The coherent spin dynamics of carriers in the heterostructures that contain an InGaAs/GaAs quantum well (QW) and an Mn \u03b4 layer, which are separated by a narrow GaAs spacer 2\u201310 nm thick, is comprehensively studied by the magnetooptical Kerr effect method at a picosecond time resolution. The exchange interaction of photoexcited electrons in QW with the ferromagnetic Mn \u03b4 layer manifests itself in magnetic-field and temperature dependences of the Larmor precession frequency of electron spins and is found to be very weak (several microelectron volts). Two nonoscillating components related to holes exist apart from an electron contribution to the Kerr signal of polarization plane rotation. At the initial stage, a fast relaxation process, which corresponds to the spin relaxation of free photoexcited holes, is detected in the structures with a wide spacer. The second component is caused by the further spin dephasing of energyrelaxed holes, which are localized at strong QW potential fluctuations in the structures under study. The decay of all contributions to the Kerr signal in time increases substantially when the spacer thickness decreases, which correlates with the enhancement of nonradiative recombination in QW.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s106377611607013x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "123"
      }
    ], 
    "keywords": [
      "Mn \u03b4 layer", 
      "coherent spin dynamics", 
      "spin dynamics", 
      "Kerr signal", 
      "ferromagnetic Mn \u03b4 layer", 
      "InGaAs/GaAs quantum", 
      "Larmor precession frequency", 
      "picosecond time resolution", 
      "polarization plane rotation", 
      "Kerr effect method", 
      "ferromagnetic semiconductor heterostructures", 
      "fast relaxation process", 
      "nonoscillating component", 
      "GaAs quantum", 
      "electron spin", 
      "semiconductor heterostructures", 
      "spin dephasing", 
      "precession frequency", 
      "spin relaxation", 
      "wide spacer", 
      "electron contribution", 
      "time resolution", 
      "nonradiative recombination", 
      "exchange interaction", 
      "potential fluctuations", 
      "relaxation processes", 
      "spacer thickness", 
      "QW", 
      "heterostructures", 
      "holes", 
      "temperature dependence", 
      "quantum", 
      "plane rotation", 
      "dephasing", 
      "electrons", 
      "spin", 
      "layer", 
      "dynamics", 
      "decay", 
      "time increases", 
      "carriers", 
      "relaxation", 
      "effect method", 
      "second component", 
      "structure", 
      "dependence", 
      "resolution", 
      "initial stage", 
      "recombination", 
      "signals", 
      "fluctuations", 
      "thickness", 
      "rotation", 
      "contribution", 
      "enhancement", 
      "interaction", 
      "frequency", 
      "components", 
      "spacer", 
      "process", 
      "method", 
      "increase", 
      "study", 
      "stage", 
      "spacer 2", 
      "\u03b4 layer", 
      "narrow GaAs spacer 2", 
      "GaAs spacer 2", 
      "magnetooptical Kerr effect method", 
      "further spin dephasing", 
      "energyrelaxed holes", 
      "strong QW potential fluctuations", 
      "QW potential fluctuations"
    ], 
    "name": "Coherent spin dynamics of carriers in ferromagnetic semiconductor heterostructures with an Mn \u03b4 layer", 
    "pagination": "420-428", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045378794"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s106377611607013x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s106377611607013x", 
      "https://app.dimensions.ai/details/publication/pub.1045378794"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_692.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s106377611607013x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s106377611607013x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s106377611607013x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s106377611607013x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s106377611607013x'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      22 PREDICATES      106 URIs      91 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s106377611607013x schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ncc291c950a0547f5b089c2e6786e1a3e
4 schema:citation sg:pub.10.1007/978-3-540-78820-1_6
5 sg:pub.10.1038/ncomms1957
6 sg:pub.10.1038/nmat2898
7 sg:pub.10.1134/1.1641485
8 sg:pub.10.1134/s0021364009220056
9 sg:pub.10.1134/s1063776109080159
10 sg:pub.10.1134/s106377611106001x
11 schema:datePublished 2016-09
12 schema:datePublishedReg 2016-09-01
13 schema:description The coherent spin dynamics of carriers in the heterostructures that contain an InGaAs/GaAs quantum well (QW) and an Mn δ layer, which are separated by a narrow GaAs spacer 2–10 nm thick, is comprehensively studied by the magnetooptical Kerr effect method at a picosecond time resolution. The exchange interaction of photoexcited electrons in QW with the ferromagnetic Mn δ layer manifests itself in magnetic-field and temperature dependences of the Larmor precession frequency of electron spins and is found to be very weak (several microelectron volts). Two nonoscillating components related to holes exist apart from an electron contribution to the Kerr signal of polarization plane rotation. At the initial stage, a fast relaxation process, which corresponds to the spin relaxation of free photoexcited holes, is detected in the structures with a wide spacer. The second component is caused by the further spin dephasing of energyrelaxed holes, which are localized at strong QW potential fluctuations in the structures under study. The decay of all contributions to the Kerr signal in time increases substantially when the spacer thickness decreases, which correlates with the enhancement of nonradiative recombination in QW.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N7aa96d5c50ac48e681211f83cd300386
18 Nb7c2e83848214bafa0d6d20058b1fb56
19 sg:journal.1295107
20 schema:keywords GaAs quantum
21 GaAs spacer 2
22 InGaAs/GaAs quantum
23 Kerr effect method
24 Kerr signal
25 Larmor precession frequency
26 Mn δ layer
27 QW
28 QW potential fluctuations
29 carriers
30 coherent spin dynamics
31 components
32 contribution
33 decay
34 dependence
35 dephasing
36 dynamics
37 effect method
38 electron contribution
39 electron spin
40 electrons
41 energyrelaxed holes
42 enhancement
43 exchange interaction
44 fast relaxation process
45 ferromagnetic Mn δ layer
46 ferromagnetic semiconductor heterostructures
47 fluctuations
48 frequency
49 further spin dephasing
50 heterostructures
51 holes
52 increase
53 initial stage
54 interaction
55 layer
56 magnetooptical Kerr effect method
57 method
58 narrow GaAs spacer 2
59 nonoscillating component
60 nonradiative recombination
61 picosecond time resolution
62 plane rotation
63 polarization plane rotation
64 potential fluctuations
65 precession frequency
66 process
67 quantum
68 recombination
69 relaxation
70 relaxation processes
71 resolution
72 rotation
73 second component
74 semiconductor heterostructures
75 signals
76 spacer
77 spacer 2
78 spacer thickness
79 spin
80 spin dephasing
81 spin dynamics
82 spin relaxation
83 stage
84 strong QW potential fluctuations
85 structure
86 study
87 temperature dependence
88 thickness
89 time increases
90 time resolution
91 wide spacer
92 δ layer
93 schema:name Coherent spin dynamics of carriers in ferromagnetic semiconductor heterostructures with an Mn δ layer
94 schema:pagination 420-428
95 schema:productId N2654bd5a4a3d420f97b3e247ec1ec24b
96 Nbf6e568f05784679967bb1f228d1a17b
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045378794
98 https://doi.org/10.1134/s106377611607013x
99 schema:sdDatePublished 2022-01-01T18:38
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N2ad628e224d5464ba69aa10330f0adac
102 schema:url https://doi.org/10.1134/s106377611607013x
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N027b0d431a9847d1949a2c202956de5c rdf:first sg:person.01063636363.73
107 rdf:rest N799a4eaa2bda40afbadf211f1b54bea5
108 N2654bd5a4a3d420f97b3e247ec1ec24b schema:name doi
109 schema:value 10.1134/s106377611607013x
110 rdf:type schema:PropertyValue
111 N2ad628e224d5464ba69aa10330f0adac schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N52f8b5f4fbc9416b9ac746b53c4f1dd9 rdf:first sg:person.0751365475.26
114 rdf:rest N901e78903607476b885f130396353dfa
115 N60eb2be6b6f043559bfa3a6104926fa7 rdf:first sg:person.01050126701.17
116 rdf:rest N52f8b5f4fbc9416b9ac746b53c4f1dd9
117 N70fe28ddad0644febcab1b8fce8e25f0 rdf:first sg:person.013277464553.77
118 rdf:rest N027b0d431a9847d1949a2c202956de5c
119 N799a4eaa2bda40afbadf211f1b54bea5 rdf:first sg:person.015630456362.36
120 rdf:rest N80d7965007f84c49a074130ca59c7da6
121 N7aa96d5c50ac48e681211f83cd300386 schema:issueNumber 3
122 rdf:type schema:PublicationIssue
123 N80d7965007f84c49a074130ca59c7da6 rdf:first sg:person.0622636442.02
124 rdf:rest rdf:nil
125 N901e78903607476b885f130396353dfa rdf:first sg:person.012366717075.23
126 rdf:rest N70fe28ddad0644febcab1b8fce8e25f0
127 Nb7c2e83848214bafa0d6d20058b1fb56 schema:volumeNumber 123
128 rdf:type schema:PublicationVolume
129 Nbf6e568f05784679967bb1f228d1a17b schema:name dimensions_id
130 schema:value pub.1045378794
131 rdf:type schema:PropertyValue
132 Ncc291c950a0547f5b089c2e6786e1a3e rdf:first sg:person.011610151633.09
133 rdf:rest N60eb2be6b6f043559bfa3a6104926fa7
134 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
135 schema:name Physical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
138 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
139 rdf:type schema:DefinedTerm
140 sg:journal.1295107 schema:issn 1063-7761
141 1090-6509
142 schema:name Journal of Experimental and Theoretical Physics
143 schema:publisher Pleiades Publishing
144 rdf:type schema:Periodical
145 sg:person.01050126701.17 schema:affiliation grid-institutes:grid.5675.1
146 schema:familyName Akimov
147 schema:givenName I. A.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050126701.17
149 rdf:type schema:Person
150 sg:person.01063636363.73 schema:affiliation grid-institutes:grid.28171.3d
151 schema:familyName Zvonkov
152 schema:givenName B. N.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063636363.73
154 rdf:type schema:Person
155 sg:person.011610151633.09 schema:affiliation grid-institutes:grid.418975.6
156 schema:familyName Zaitsev
157 schema:givenName S. V.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09
159 rdf:type schema:Person
160 sg:person.012366717075.23 schema:affiliation grid-institutes:grid.28171.3d
161 schema:familyName Danilov
162 schema:givenName Yu. A.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366717075.23
164 rdf:type schema:Person
165 sg:person.013277464553.77 schema:affiliation grid-institutes:grid.28171.3d
166 schema:familyName Dorokhin
167 schema:givenName M. V.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013277464553.77
169 rdf:type schema:Person
170 sg:person.015630456362.36 schema:affiliation grid-institutes:grid.5675.1
171 schema:familyName Yakovlev
172 schema:givenName D. R.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015630456362.36
174 rdf:type schema:Person
175 sg:person.0622636442.02 schema:affiliation grid-institutes:grid.5675.1
176 schema:familyName Bayer
177 schema:givenName M.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622636442.02
179 rdf:type schema:Person
180 sg:person.0751365475.26 schema:affiliation grid-institutes:grid.5675.1
181 schema:familyName Langer
182 schema:givenName L.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751365475.26
184 rdf:type schema:Person
185 sg:pub.10.1007/978-3-540-78820-1_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008352826
186 https://doi.org/10.1007/978-3-540-78820-1_6
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ncomms1957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030270405
189 https://doi.org/10.1038/ncomms1957
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nmat2898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009841275
192 https://doi.org/10.1038/nmat2898
193 rdf:type schema:CreativeWork
194 sg:pub.10.1134/1.1641485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053432496
195 https://doi.org/10.1134/1.1641485
196 rdf:type schema:CreativeWork
197 sg:pub.10.1134/s0021364009220056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017667259
198 https://doi.org/10.1134/s0021364009220056
199 rdf:type schema:CreativeWork
200 sg:pub.10.1134/s1063776109080159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049966737
201 https://doi.org/10.1134/s1063776109080159
202 rdf:type schema:CreativeWork
203 sg:pub.10.1134/s106377611106001x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041721179
204 https://doi.org/10.1134/s106377611106001x
205 rdf:type schema:CreativeWork
206 grid-institutes:grid.28171.3d schema:alternateName Nizhny Novgorod Research Physicotechnical Institute, Lobachevskii State University, pr. Gagarina 23/5, 603600, Nizhny Novgorod, Russia
207 schema:name Nizhny Novgorod Research Physicotechnical Institute, Lobachevskii State University, pr. Gagarina 23/5, 603600, Nizhny Novgorod, Russia
208 rdf:type schema:Organization
209 grid-institutes:grid.418975.6 schema:alternateName Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
210 schema:name Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
211 rdf:type schema:Organization
212 grid-institutes:grid.5675.1 schema:alternateName Experimentelle Physik 2, Technische Universität Dortmund, D-44227, Dortmund, Germany
213 schema:name Experimentelle Physik 2, Technische Universität Dortmund, D-44227, Dortmund, Germany
214 Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...