Raman spectroscopy of isotopically pure (12C, 13C) and isotopically mixed (12.5C) diamond single crystals at ultrahigh pressures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-09

AUTHORS

P. V. Enkovich, V. V. Brazhkin, S. G. Lyapin, A. P. Novikov, H. Kanda, S. M. Stishov

ABSTRACT

The Raman scattering by isotopically pure 12C and 13C diamond single crystals and by isotopically mixed 12.5C diamond single crystals is studied at a high accuracy. The studies are performed over a wide pressure range up to 73 GPa using helium as a hydrostatic pressure-transferring medium. It is found that the quantum effects, which determine the difference between the ratio of the Raman scattering frequencies in the 12C and 13C diamonds and the classical ratio (1.0408), increase to 30 GPa and then decrease. Thus, inversion in the sign of the quantum contribution to the physical properties of diamond during compression is detected. Our data suggest that the maximum possible difference between the bulk moduli of the 12C and 13C diamonds is 0.15%. The investigation of the isotopically mixed 12.5C diamond shows that the effective mass, which determines the Raman frequency, decreases during compression from 12.38 au at normal pressure to 12.33 au at 73 GPa. More... »

PAGES

443-451

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063776116070049

DOI

http://dx.doi.org/10.1134/s1063776116070049

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029465723


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute for High-Pressure Physics, Russian Academy of Sciences, Troitsk, 142190, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Enkovich", 
        "givenName": "P. V.", 
        "id": "sg:person.012557512041.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012557512041.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute for High-Pressure Physics, Russian Academy of Sciences, Troitsk, 142190, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brazhkin", 
        "givenName": "V. V.", 
        "id": "sg:person.01013522636.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013522636.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute for High-Pressure Physics, Russian Academy of Sciences, Troitsk, 142190, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyapin", 
        "givenName": "S. G.", 
        "id": "sg:person.015721215017.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015721215017.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute for High-Pressure Physics, Russian Academy of Sciences, Troitsk, 142190, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Novikov", 
        "givenName": "A. P.", 
        "id": "sg:person.0727365460.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727365460.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, 305-0044, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanda", 
        "givenName": "H.", 
        "id": "sg:person.010704347747.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010704347747.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute for High-Pressure Physics, Russian Academy of Sciences, Troitsk, 142190, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stishov", 
        "givenName": "S. M.", 
        "id": "sg:person.01030502343.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030502343.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.65.075206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004100956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.075206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004100956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jrs.1044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016321139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.094107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020257402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.094107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020257402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.568010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021902299", 
          "https://doi.org/10.1134/1.568010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035713677", 
          "https://doi.org/10.1038/nmat831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035713677", 
          "https://doi.org/10.1038/nmat831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.357947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057978403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.366268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057994537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu2001v044n03abeh000842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058173252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/21/8/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058965246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.6896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.6896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.1423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.1423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.4835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.4835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.7123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.7123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.7171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.7171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.9341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.9341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.13860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.13860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.3989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.3989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.13167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.13167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.14660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060593548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.14660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060593548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.1173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.1173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.1173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufne.0182.201208e.0855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071210465"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "The Raman scattering by isotopically pure 12C and 13C diamond single crystals and by isotopically mixed 12.5C diamond single crystals is studied at a high accuracy. The studies are performed over a wide pressure range up to 73 GPa using helium as a hydrostatic pressure-transferring medium. It is found that the quantum effects, which determine the difference between the ratio of the Raman scattering frequencies in the 12C and 13C diamonds and the classical ratio (1.0408), increase to 30 GPa and then decrease. Thus, inversion in the sign of the quantum contribution to the physical properties of diamond during compression is detected. Our data suggest that the maximum possible difference between the bulk moduli of the 12C and 13C diamonds is 0.15%. The investigation of the isotopically mixed 12.5C diamond shows that the effective mass, which determines the Raman frequency, decreases during compression from 12.38 au at normal pressure to 12.33 au at 73 GPa.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063776116070049", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "123"
      }
    ], 
    "name": "Raman spectroscopy of isotopically pure (12C, 13C) and isotopically mixed (12.5C) diamond single crystals at ultrahigh pressures", 
    "pagination": "443-451", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8c5ec3155d299b4b417a92f7fa37f154582fd0f12cb7bc03e604ddb072f20862"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063776116070049"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029465723"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063776116070049", 
      "https://app.dimensions.ai/details/publication/pub.1029465723"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88248_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063776116070049"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063776116070049'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063776116070049'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063776116070049'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063776116070049'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063776116070049 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Ne8552779d9a24bc8a6b18d1e845bc594
4 schema:citation sg:pub.10.1038/nmat831
5 sg:pub.10.1134/1.568010
6 https://doi.org/10.1002/jrs.1044
7 https://doi.org/10.1063/1.357947
8 https://doi.org/10.1063/1.366268
9 https://doi.org/10.1070/pu2001v044n03abeh000842
10 https://doi.org/10.1088/0022-3719/21/8/012
11 https://doi.org/10.1103/physrevb.31.6896
12 https://doi.org/10.1103/physrevb.32.1423
13 https://doi.org/10.1103/physrevb.43.4835
14 https://doi.org/10.1103/physrevb.44.7123
15 https://doi.org/10.1103/physrevb.45.7171
16 https://doi.org/10.1103/physrevb.49.9341
17 https://doi.org/10.1103/physrevb.50.13860
18 https://doi.org/10.1103/physrevb.54.3989
19 https://doi.org/10.1103/physrevb.56.13167
20 https://doi.org/10.1103/physrevb.60.14660
21 https://doi.org/10.1103/physrevb.65.075206
22 https://doi.org/10.1103/physrevb.68.094107
23 https://doi.org/10.1103/physrevlett.71.189
24 https://doi.org/10.1103/revmodphys.77.1173
25 https://doi.org/10.3367/ufne.0182.201208e.0855
26 schema:datePublished 2016-09
27 schema:datePublishedReg 2016-09-01
28 schema:description The Raman scattering by isotopically pure 12C and 13C diamond single crystals and by isotopically mixed 12.5C diamond single crystals is studied at a high accuracy. The studies are performed over a wide pressure range up to 73 GPa using helium as a hydrostatic pressure-transferring medium. It is found that the quantum effects, which determine the difference between the ratio of the Raman scattering frequencies in the 12C and 13C diamonds and the classical ratio (1.0408), increase to 30 GPa and then decrease. Thus, inversion in the sign of the quantum contribution to the physical properties of diamond during compression is detected. Our data suggest that the maximum possible difference between the bulk moduli of the 12C and 13C diamonds is 0.15%. The investigation of the isotopically mixed 12.5C diamond shows that the effective mass, which determines the Raman frequency, decreases during compression from 12.38 au at normal pressure to 12.33 au at 73 GPa.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N1b6d0c4148d4470b8363a661a6a338de
33 Nef4becab19d9400a827a1383336a9899
34 sg:journal.1295107
35 schema:name Raman spectroscopy of isotopically pure (12C, 13C) and isotopically mixed (12.5C) diamond single crystals at ultrahigh pressures
36 schema:pagination 443-451
37 schema:productId N707b60026518426fa1ba14cde4d402e2
38 Ne4e0ddc9cfe34d48aa61f5b7d7ce13aa
39 Nedca01f83c8a4dbb8f155c54e47151bf
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029465723
41 https://doi.org/10.1134/s1063776116070049
42 schema:sdDatePublished 2019-04-11T13:10
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N93f29b769b9f485889074f175ba39e4a
45 schema:url https://link.springer.com/10.1134%2FS1063776116070049
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N1b6d0c4148d4470b8363a661a6a338de schema:volumeNumber 123
50 rdf:type schema:PublicationVolume
51 N3d1884ea52f0449b85ef47f5397d406a rdf:first sg:person.015721215017.41
52 rdf:rest N3dfb9b69c1484c19a5ee29ee6bdb0497
53 N3dfb9b69c1484c19a5ee29ee6bdb0497 rdf:first sg:person.0727365460.29
54 rdf:rest Nb43c7080cb0c45b3a1fd20c91b181b7a
55 N707b60026518426fa1ba14cde4d402e2 schema:name dimensions_id
56 schema:value pub.1029465723
57 rdf:type schema:PropertyValue
58 N93f29b769b9f485889074f175ba39e4a schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N94cf769fea404a6b82dfb1721b978e87 rdf:first sg:person.01030502343.25
61 rdf:rest rdf:nil
62 Nb43c7080cb0c45b3a1fd20c91b181b7a rdf:first sg:person.010704347747.75
63 rdf:rest N94cf769fea404a6b82dfb1721b978e87
64 Ne4e0ddc9cfe34d48aa61f5b7d7ce13aa schema:name doi
65 schema:value 10.1134/s1063776116070049
66 rdf:type schema:PropertyValue
67 Ne8552779d9a24bc8a6b18d1e845bc594 rdf:first sg:person.012557512041.47
68 rdf:rest Nf5a0875b842a4ceea7773f4f6f4f12f7
69 Nedca01f83c8a4dbb8f155c54e47151bf schema:name readcube_id
70 schema:value 8c5ec3155d299b4b417a92f7fa37f154582fd0f12cb7bc03e604ddb072f20862
71 rdf:type schema:PropertyValue
72 Nef4becab19d9400a827a1383336a9899 schema:issueNumber 3
73 rdf:type schema:PublicationIssue
74 Nf5a0875b842a4ceea7773f4f6f4f12f7 rdf:first sg:person.01013522636.98
75 rdf:rest N3d1884ea52f0449b85ef47f5397d406a
76 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
80 schema:name Optical Physics
81 rdf:type schema:DefinedTerm
82 sg:journal.1295107 schema:issn 1063-7761
83 1090-6509
84 schema:name Journal of Experimental and Theoretical Physics
85 rdf:type schema:Periodical
86 sg:person.01013522636.98 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
87 schema:familyName Brazhkin
88 schema:givenName V. V.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013522636.98
90 rdf:type schema:Person
91 sg:person.01030502343.25 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
92 schema:familyName Stishov
93 schema:givenName S. M.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030502343.25
95 rdf:type schema:Person
96 sg:person.010704347747.75 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
97 schema:familyName Kanda
98 schema:givenName H.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010704347747.75
100 rdf:type schema:Person
101 sg:person.012557512041.47 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
102 schema:familyName Enkovich
103 schema:givenName P. V.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012557512041.47
105 rdf:type schema:Person
106 sg:person.015721215017.41 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
107 schema:familyName Lyapin
108 schema:givenName S. G.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015721215017.41
110 rdf:type schema:Person
111 sg:person.0727365460.29 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
112 schema:familyName Novikov
113 schema:givenName A. P.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727365460.29
115 rdf:type schema:Person
116 sg:pub.10.1038/nmat831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035713677
117 https://doi.org/10.1038/nmat831
118 rdf:type schema:CreativeWork
119 sg:pub.10.1134/1.568010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021902299
120 https://doi.org/10.1134/1.568010
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/jrs.1044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016321139
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1063/1.357947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057978403
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1063/1.366268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057994537
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1070/pu2001v044n03abeh000842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058173252
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1088/0022-3719/21/8/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058965246
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.31.6896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060537646
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevb.32.1423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060537971
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevb.43.4835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060557634
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevb.44.7123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060559931
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevb.45.7171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060561979
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevb.49.9341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060571611
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevb.50.13860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060572865
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevb.54.3989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582335
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevb.56.13167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060585574
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevb.60.14660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060593548
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevb.65.075206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004100956
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevb.68.094107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020257402
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.71.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807583
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/revmodphys.77.1173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839593
159 rdf:type schema:CreativeWork
160 https://doi.org/10.3367/ufne.0182.201208e.0855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071210465
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
163 schema:name National Institute for Materials Science, 305-0044, Tsukuba, Ibaraki, Japan
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
166 schema:name Institute for High-Pressure Physics, Russian Academy of Sciences, Troitsk, 142190, Moscow, Russia
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...