Effect of hole doping on the electronic structure and the Fermi surface in the Hubbard model within norm-conserving cluster pertubation ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-01

AUTHORS

S. V. Nikolaev, S. G. Ovchinnikov

ABSTRACT

The concentration dependences of the band structure, spectral weight, density of states, and Fermi surface in the paramagnetic state are studied in the Hubbard model within cluster pertubation theory with 2 × 2 clusters. Representation of the Hubbard X operators makes it possible to control conservation of the spectral weight in constructing cluster perturbation theory. The calculated value of the ground-state energy is in good agreement with the results obtained using nonperturbative methods such as the quantum Monte Carlo method, exact diagonalization of a 4 × 4 cluster, and the variational Monte Carlo method. It is shown that in the case of hole doping, the states in the band gap (in-gap states) lie near the top of the lower Hubbard band for large values of U and near the bottom of the upper band for small U. The concentration dependence of the Fermi surface strongly depends on hopping to second (t′) and third (t″) neighbors. For parameter values typical of HTSC cuprates, the existence of three concentration regions with different Fermi surfaces is demonstrated. It is shown that broadening of the spectral electron density with an energy resolution typical of contemporary ARPES leads to a pattern of arcs with a length depending on the concentration. Only an order-of-magnitude decrease in the linewidth makes it possible to obtain the true Fermi surface from the spectral density. The kinks associated with strong electron correlations are detected in the dispersion relation below the Fermi level. More... »

PAGES

118-131

References to SciGraph publications

  • 2001-04. Evolution of the Fermi surface of cuprates on the basis of the spin-polaron approach in JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS
  • 2007-03. Kinks in the dispersion of strongly correlated electrons in NATURE PHYSICS
  • 2007-04. Electron spectrum in high-temperature cuprate superconductors in JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS
  • 2010-08. Pseudogap state of two-dimensional Kondo lattice in JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS
  • 2006-07. Evolution of the pseudogap from Fermi arcs to the nodal liquid in NATURE PHYSICS
  • 2007-06. Doping-dependent evolution of low-energy excitations and quantum phase transitions within an effective model for high-Tc copper oxides in THE EUROPEAN PHYSICAL JOURNAL B
  • 2005-08. Destruction of the Fermi surface due to pseudogap fluctuations in strongly correlated systems in JETP LETTERS
  • 2011-07. Calculation of the Fermi surface with complex topology from norm-conserving cluster perturbation theory for doping dependent electronic structure of the Hubbard model in JETP LETTERS
  • 2009-11. Lifshits quantum phase transitions and rearrangement of the Fermi surface upon a change in the hole concentration in high-temperature superconductors in JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS
  • 2001-08. Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors in NATURE
  • 2007-05-31. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor in NATURE
  • 2010-10. Quantitative comparison of single- and two-particle properties in the cuprates in THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS
  • 2010-10. Cluster perturbation theory in Hubbard model exactly taking into account the short-range magnetic order in 2 × 2 cluster in JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1063776111150143

    DOI

    http://dx.doi.org/10.1134/s1063776111150143

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034726353


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Omsk State University", 
              "id": "https://www.grid.ac/institutes/grid.77431.36", 
              "name": [
                "Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia", 
                "Dostoevsky State University, 644077, Omsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nikolaev", 
            "givenName": "S. V.", 
            "id": "sg:person.07521512507.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07521512507.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Siberian Federal University", 
              "id": "https://www.grid.ac/institutes/grid.412592.9", 
              "name": [
                "Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia", 
                "Siberian Federal University, 660041, Krasnoyarsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ovchinnikov", 
            "givenName": "S. G.", 
            "id": "sg:person.01201710603.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201710603.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1140/epjst/e2010-01304-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001536061", 
              "https://doi.org/10.1140/epjst/e2010-01304-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjst/e2010-01304-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001536061", 
              "https://doi.org/10.1140/epjst/e2010-01304-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.094516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002930319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.094516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002930319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/19/12/125209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004721349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0021364011090116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006301775", 
              "https://doi.org/10.1134/s0021364011090116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006521670", 
              "https://doi.org/10.1038/nature05872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063776107020082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007813719", 
              "https://doi.org/10.1134/s1063776107020082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.117004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011018868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.117004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011018868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012708016", 
              "https://doi.org/10.1038/nphys334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012708016", 
              "https://doi.org/10.1038/nphys334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.70.245110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013060588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.70.245110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013060588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.047003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013088173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.047003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013088173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.77.1027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013615668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.77.1027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013615668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.77.1027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013615668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.74.125110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014277242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.74.125110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014277242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2007-00179-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014817128", 
              "https://doi.org/10.1140/epjb/e2007-00179-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.70.174517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015633076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.70.174517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015633076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1963.0204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017315055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.67.064504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017420500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.67.064504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017420500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063776110080170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019653458", 
              "https://doi.org/10.1134/s1063776110080170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063776110080170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019653458", 
              "https://doi.org/10.1134/s1063776110080170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.195113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020848028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.79.195113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020848028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.037004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021827119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.037004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021827119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35087518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025272248", 
              "https://doi.org/10.1038/35087518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35087518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025272248", 
              "https://doi.org/10.1038/35087518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2199446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028173015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.66.075129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028633109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.66.075129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028633109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.056404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029820652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.056404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029820652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1371349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031136097", 
              "https://doi.org/10.1134/1.1371349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.085119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031471206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.085119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031471206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.62.4137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035087837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.62.4137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035087837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.2121814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036652325", 
              "https://doi.org/10.1134/1.2121814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.2121814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036652325", 
              "https://doi.org/10.1134/1.2121814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063776110100146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039071121", 
              "https://doi.org/10.1134/s1063776110100146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063776110100146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039071121", 
              "https://doi.org/10.1134/s1063776110100146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040032415", 
              "https://doi.org/10.1038/nphys538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1965.0124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044473918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.73.174501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044885504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.73.174501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044885504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.75.473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045026742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.75.473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045026742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.79.353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045038063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.79.353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045038063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063776109110077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045468005", 
              "https://doi.org/10.1134/s1063776109110077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063776109110077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045468005", 
              "https://doi.org/10.1134/s1063776109110077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physc.2007.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047636264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/1/50/015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049976121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/pu2001v044n05abeh000902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050408306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0921-4534(89)90397-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052953480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0921-4534(89)90397-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052953480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.31.4403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060537222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.31.4403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060537222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.42.6877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060555873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.42.6877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060555873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.44.9562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060560316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.44.9562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060560316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.76.4841", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060813413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.76.4841", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060813413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.78.17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.78.17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jpsj.56.3582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063109966"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-01", 
        "datePublishedReg": "2012-01-01", 
        "description": "The concentration dependences of the band structure, spectral weight, density of states, and Fermi surface in the paramagnetic state are studied in the Hubbard model within cluster pertubation theory with 2 \u00d7 2 clusters. Representation of the Hubbard X operators makes it possible to control conservation of the spectral weight in constructing cluster perturbation theory. The calculated value of the ground-state energy is in good agreement with the results obtained using nonperturbative methods such as the quantum Monte Carlo method, exact diagonalization of a 4 \u00d7 4 cluster, and the variational Monte Carlo method. It is shown that in the case of hole doping, the states in the band gap (in-gap states) lie near the top of the lower Hubbard band for large values of U and near the bottom of the upper band for small U. The concentration dependence of the Fermi surface strongly depends on hopping to second (t\u2032) and third (t\u2033) neighbors. For parameter values typical of HTSC cuprates, the existence of three concentration regions with different Fermi surfaces is demonstrated. It is shown that broadening of the spectral electron density with an energy resolution typical of contemporary ARPES leads to a pattern of arcs with a length depending on the concentration. Only an order-of-magnitude decrease in the linewidth makes it possible to obtain the true Fermi surface from the spectral density. The kinks associated with strong electron correlations are detected in the dispersion relation below the Fermi level.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1063776111150143", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295107", 
            "issn": [
              "1063-7761", 
              "1090-6509"
            ], 
            "name": "Journal of Experimental and Theoretical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "114"
          }
        ], 
        "name": "Effect of hole doping on the electronic structure and the Fermi surface in the Hubbard model within norm-conserving cluster pertubation theory", 
        "pagination": "118-131", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a56c3b63aca5811e327639881c1f5fa84e865d85c75f6affbee38ad136330b26"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1063776111150143"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034726353"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1063776111150143", 
          "https://app.dimensions.ai/details/publication/pub.1034726353"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000506.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134%2FS1063776111150143"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063776111150143'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063776111150143'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063776111150143'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063776111150143'


     

    This table displays all metadata directly associated to this object as RDF triples.

    218 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1063776111150143 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Ne5a614cbb76c496aaec8f22ece8dd5af
    4 schema:citation sg:pub.10.1038/35087518
    5 sg:pub.10.1038/nature05872
    6 sg:pub.10.1038/nphys334
    7 sg:pub.10.1038/nphys538
    8 sg:pub.10.1134/1.1371349
    9 sg:pub.10.1134/1.2121814
    10 sg:pub.10.1134/s0021364011090116
    11 sg:pub.10.1134/s1063776107020082
    12 sg:pub.10.1134/s1063776109110077
    13 sg:pub.10.1134/s1063776110080170
    14 sg:pub.10.1134/s1063776110100146
    15 sg:pub.10.1140/epjb/e2007-00179-2
    16 sg:pub.10.1140/epjst/e2010-01304-2
    17 https://doi.org/10.1016/0921-4534(89)90397-3
    18 https://doi.org/10.1016/j.physc.2007.03.005
    19 https://doi.org/10.1063/1.2199446
    20 https://doi.org/10.1070/pu2001v044n05abeh000902
    21 https://doi.org/10.1088/0953-8984/1/50/015
    22 https://doi.org/10.1088/0953-8984/19/12/125209
    23 https://doi.org/10.1098/rspa.1963.0204
    24 https://doi.org/10.1098/rspa.1965.0124
    25 https://doi.org/10.1103/physrevb.31.4403
    26 https://doi.org/10.1103/physrevb.42.6877
    27 https://doi.org/10.1103/physrevb.44.9562
    28 https://doi.org/10.1103/physrevb.62.4137
    29 https://doi.org/10.1103/physrevb.66.075129
    30 https://doi.org/10.1103/physrevb.67.064504
    31 https://doi.org/10.1103/physrevb.70.174517
    32 https://doi.org/10.1103/physrevb.70.245110
    33 https://doi.org/10.1103/physrevb.73.174501
    34 https://doi.org/10.1103/physrevb.74.125110
    35 https://doi.org/10.1103/physrevb.77.094516
    36 https://doi.org/10.1103/physrevb.79.195113
    37 https://doi.org/10.1103/physrevb.82.085119
    38 https://doi.org/10.1103/physrevlett.102.056404
    39 https://doi.org/10.1103/physrevlett.103.037004
    40 https://doi.org/10.1103/physrevlett.76.4841
    41 https://doi.org/10.1103/physrevlett.87.047003
    42 https://doi.org/10.1103/physrevlett.96.117004
    43 https://doi.org/10.1103/revmodphys.75.473
    44 https://doi.org/10.1103/revmodphys.77.1027
    45 https://doi.org/10.1103/revmodphys.78.17
    46 https://doi.org/10.1103/revmodphys.79.353
    47 https://doi.org/10.1143/jpsj.56.3582
    48 schema:datePublished 2012-01
    49 schema:datePublishedReg 2012-01-01
    50 schema:description The concentration dependences of the band structure, spectral weight, density of states, and Fermi surface in the paramagnetic state are studied in the Hubbard model within cluster pertubation theory with 2 × 2 clusters. Representation of the Hubbard X operators makes it possible to control conservation of the spectral weight in constructing cluster perturbation theory. The calculated value of the ground-state energy is in good agreement with the results obtained using nonperturbative methods such as the quantum Monte Carlo method, exact diagonalization of a 4 × 4 cluster, and the variational Monte Carlo method. It is shown that in the case of hole doping, the states in the band gap (in-gap states) lie near the top of the lower Hubbard band for large values of U and near the bottom of the upper band for small U. The concentration dependence of the Fermi surface strongly depends on hopping to second (t′) and third (t″) neighbors. For parameter values typical of HTSC cuprates, the existence of three concentration regions with different Fermi surfaces is demonstrated. It is shown that broadening of the spectral electron density with an energy resolution typical of contemporary ARPES leads to a pattern of arcs with a length depending on the concentration. Only an order-of-magnitude decrease in the linewidth makes it possible to obtain the true Fermi surface from the spectral density. The kinks associated with strong electron correlations are detected in the dispersion relation below the Fermi level.
    51 schema:genre research_article
    52 schema:inLanguage en
    53 schema:isAccessibleForFree false
    54 schema:isPartOf N8443b21d2b994dbfa16f79b378ab87a9
    55 Nf6a1ec377ee94986833998769efe2eeb
    56 sg:journal.1295107
    57 schema:name Effect of hole doping on the electronic structure and the Fermi surface in the Hubbard model within norm-conserving cluster pertubation theory
    58 schema:pagination 118-131
    59 schema:productId Na697283c32714153b0a39d09f4f75b86
    60 Na7c7705573984f049224cf9cd45a79aa
    61 Nab80eff0c1534500b35ea77a148425ca
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034726353
    63 https://doi.org/10.1134/s1063776111150143
    64 schema:sdDatePublished 2019-04-11T00:14
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher N28ac734ede4d49609e4a11c7aa4313e4
    67 schema:url http://link.springer.com/10.1134%2FS1063776111150143
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N28ac734ede4d49609e4a11c7aa4313e4 schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 N39e91c30b0ac4bbe9764f8f958699049 rdf:first sg:person.01201710603.06
    74 rdf:rest rdf:nil
    75 N8443b21d2b994dbfa16f79b378ab87a9 schema:volumeNumber 114
    76 rdf:type schema:PublicationVolume
    77 Na697283c32714153b0a39d09f4f75b86 schema:name readcube_id
    78 schema:value a56c3b63aca5811e327639881c1f5fa84e865d85c75f6affbee38ad136330b26
    79 rdf:type schema:PropertyValue
    80 Na7c7705573984f049224cf9cd45a79aa schema:name doi
    81 schema:value 10.1134/s1063776111150143
    82 rdf:type schema:PropertyValue
    83 Nab80eff0c1534500b35ea77a148425ca schema:name dimensions_id
    84 schema:value pub.1034726353
    85 rdf:type schema:PropertyValue
    86 Ne5a614cbb76c496aaec8f22ece8dd5af rdf:first sg:person.07521512507.48
    87 rdf:rest N39e91c30b0ac4bbe9764f8f958699049
    88 Nf6a1ec377ee94986833998769efe2eeb schema:issueNumber 1
    89 rdf:type schema:PublicationIssue
    90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Physical Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    95 rdf:type schema:DefinedTerm
    96 sg:journal.1295107 schema:issn 1063-7761
    97 1090-6509
    98 schema:name Journal of Experimental and Theoretical Physics
    99 rdf:type schema:Periodical
    100 sg:person.01201710603.06 schema:affiliation https://www.grid.ac/institutes/grid.412592.9
    101 schema:familyName Ovchinnikov
    102 schema:givenName S. G.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201710603.06
    104 rdf:type schema:Person
    105 sg:person.07521512507.48 schema:affiliation https://www.grid.ac/institutes/grid.77431.36
    106 schema:familyName Nikolaev
    107 schema:givenName S. V.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07521512507.48
    109 rdf:type schema:Person
    110 sg:pub.10.1038/35087518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025272248
    111 https://doi.org/10.1038/35087518
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1038/nature05872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006521670
    114 https://doi.org/10.1038/nature05872
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1038/nphys334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012708016
    117 https://doi.org/10.1038/nphys334
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1038/nphys538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040032415
    120 https://doi.org/10.1038/nphys538
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1134/1.1371349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031136097
    123 https://doi.org/10.1134/1.1371349
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1134/1.2121814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036652325
    126 https://doi.org/10.1134/1.2121814
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1134/s0021364011090116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006301775
    129 https://doi.org/10.1134/s0021364011090116
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1134/s1063776107020082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007813719
    132 https://doi.org/10.1134/s1063776107020082
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1134/s1063776109110077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045468005
    135 https://doi.org/10.1134/s1063776109110077
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1134/s1063776110080170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019653458
    138 https://doi.org/10.1134/s1063776110080170
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1134/s1063776110100146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039071121
    141 https://doi.org/10.1134/s1063776110100146
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1140/epjb/e2007-00179-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014817128
    144 https://doi.org/10.1140/epjb/e2007-00179-2
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1140/epjst/e2010-01304-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001536061
    147 https://doi.org/10.1140/epjst/e2010-01304-2
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/0921-4534(89)90397-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052953480
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.physc.2007.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047636264
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1063/1.2199446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028173015
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1070/pu2001v044n05abeh000902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408306
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1088/0953-8984/1/50/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049976121
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1088/0953-8984/19/12/125209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004721349
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1098/rspa.1963.0204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017315055
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1098/rspa.1965.0124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044473918
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1103/physrevb.31.4403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060537222
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physrevb.42.6877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060555873
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1103/physrevb.44.9562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060560316
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1103/physrevb.62.4137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035087837
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1103/physrevb.66.075129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028633109
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1103/physrevb.67.064504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017420500
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1103/physrevb.70.174517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015633076
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1103/physrevb.70.245110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013060588
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1103/physrevb.73.174501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044885504
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1103/physrevb.74.125110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014277242
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1103/physrevb.77.094516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002930319
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1103/physrevb.79.195113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020848028
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1103/physrevb.82.085119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031471206
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1103/physrevlett.102.056404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029820652
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1103/physrevlett.103.037004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021827119
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1103/physrevlett.76.4841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813413
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1103/physrevlett.87.047003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013088173
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1103/physrevlett.96.117004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011018868
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1103/revmodphys.75.473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045026742
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1103/revmodphys.77.1027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013615668
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1103/revmodphys.78.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839611
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1103/revmodphys.79.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045038063
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1143/jpsj.56.3582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063109966
    210 rdf:type schema:CreativeWork
    211 https://www.grid.ac/institutes/grid.412592.9 schema:alternateName Siberian Federal University
    212 schema:name Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
    213 Siberian Federal University, 660041, Krasnoyarsk, Russia
    214 rdf:type schema:Organization
    215 https://www.grid.ac/institutes/grid.77431.36 schema:alternateName Omsk State University
    216 schema:name Dostoevsky State University, 644077, Omsk, Russia
    217 Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
    218 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...