Passive scalar transport in peripheral regions of random flows View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-08

AUTHORS

A. Chernykh, V. Lebedev

ABSTRACT

We investigate statistical properties of the passive scalar mixing in random (turbulent) flows assuming its diffusion to be weak. Then at advanced stages of the passive scalar decay, its unmixed residue is primarily concentrated in a narrow diffusive layer near the wall and its transport to the bulk goes through the peripheral region (laminar sublayer of the flow). We conducted Lagrangian numerical simulations of the process for different space dimensions d and revealed structures responsible for the transport, which are passive scalar tongues pulled from the diffusive boundary layer to the bulk. We investigated statistical properties of the passive scalar and of the passive scalar integrated along the wall. Moments of both objects demonstrate scaling behavior outside the diffusive boundary layer. We propose an analytic scheme for the passive scalar statistics, explaining the features observed numerically. More... »

PAGES

352

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063776111080048

DOI

http://dx.doi.org/10.1134/s1063776111080048

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030143567


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University", 
          "id": "https://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernykh", 
        "givenName": "A.", 
        "id": "sg:person.015601146673.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015601146673.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology", 
          "id": "https://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 117334, Moscow, Russia", 
            "Moscow Institute of Physics and Technology, 141700, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebedev", 
        "givenName": "V.", 
        "id": "sg:person.01175464362.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175464362.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10652-006-9007-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001342447", 
          "https://doi.org/10.1007/s10652-006-9007-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.036301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004192910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.036301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004192910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2793145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006087218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2140024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007013595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2732234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007342094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1468-5248/3/1/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008496205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.164501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016744587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.164501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016744587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fluid.32.1.203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017399233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.52.4924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020216779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.52.4924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020216779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364008120072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021466914", 
          "https://doi.org/10.1134/s0021364008120072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026773949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026773949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-007-0429-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028138400", 
          "https://doi.org/10.1007/s00348-007-0429-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-007-0429-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028138400", 
          "https://doi.org/10.1007/s00348-007-0429-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.034501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035243523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.034501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035243523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.870089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035345711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35011019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037654713", 
          "https://doi.org/10.1038/35011019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35011019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037654713", 
          "https://doi.org/10.1038/35011019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-9018-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043968636", 
          "https://doi.org/10.1007/978-94-010-9018-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-9018-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043968636", 
          "https://doi.org/10.1007/978-94-010-9018-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051349076", 
          "https://doi.org/10.1038/35015000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051349076", 
          "https://doi.org/10.1038/35015000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053553000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053553000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112000001865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053839997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112007007525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053940694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112007007525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053940694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1699986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057770430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2227005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057849042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.868826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058120997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.134501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.134501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.258101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.258101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831392"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-08", 
    "datePublishedReg": "2011-08-01", 
    "description": "We investigate statistical properties of the passive scalar mixing in random (turbulent) flows assuming its diffusion to be weak. Then at advanced stages of the passive scalar decay, its unmixed residue is primarily concentrated in a narrow diffusive layer near the wall and its transport to the bulk goes through the peripheral region (laminar sublayer of the flow). We conducted Lagrangian numerical simulations of the process for different space dimensions d and revealed structures responsible for the transport, which are passive scalar tongues pulled from the diffusive boundary layer to the bulk. We investigated statistical properties of the passive scalar and of the passive scalar integrated along the wall. Moments of both objects demonstrate scaling behavior outside the diffusive boundary layer. We propose an analytic scheme for the passive scalar statistics, explaining the features observed numerically.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063776111080048", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "113"
      }
    ], 
    "name": "Passive scalar transport in peripheral regions of random flows", 
    "pagination": "352", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8f99e3a9d8ee1f7e6dbadcc6c867ed216b8d7930e2db2c20f684b9685e210a41"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063776111080048"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030143567"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063776111080048", 
      "https://app.dimensions.ai/details/publication/pub.1030143567"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063776111080048"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063776111080048'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063776111080048'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063776111080048'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063776111080048'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063776111080048 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Naec6186cfe2d49118304e14cbc22373e
4 schema:citation sg:pub.10.1007/978-94-010-9018-6
5 sg:pub.10.1007/s00348-007-0429-5
6 sg:pub.10.1007/s10652-006-9007-2
7 sg:pub.10.1038/35011019
8 sg:pub.10.1038/35015000
9 sg:pub.10.1134/s0021364008120072
10 https://doi.org/10.1017/s0022112000001865
11 https://doi.org/10.1017/s0022112007007525
12 https://doi.org/10.1063/1.1699986
13 https://doi.org/10.1063/1.2140024
14 https://doi.org/10.1063/1.2227005
15 https://doi.org/10.1063/1.2732234
16 https://doi.org/10.1063/1.2793145
17 https://doi.org/10.1063/1.868826
18 https://doi.org/10.1063/1.870089
19 https://doi.org/10.1088/1468-5248/3/1/014
20 https://doi.org/10.1103/physreve.52.4924
21 https://doi.org/10.1103/physreve.69.036301
22 https://doi.org/10.1103/physrevlett.75.3834
23 https://doi.org/10.1103/physrevlett.90.034501
24 https://doi.org/10.1103/physrevlett.90.134501
25 https://doi.org/10.1103/physrevlett.92.164501
26 https://doi.org/10.1103/physrevlett.95.258101
27 https://doi.org/10.1103/revmodphys.73.913
28 https://doi.org/10.1146/annurev.fluid.32.1.203
29 schema:datePublished 2011-08
30 schema:datePublishedReg 2011-08-01
31 schema:description We investigate statistical properties of the passive scalar mixing in random (turbulent) flows assuming its diffusion to be weak. Then at advanced stages of the passive scalar decay, its unmixed residue is primarily concentrated in a narrow diffusive layer near the wall and its transport to the bulk goes through the peripheral region (laminar sublayer of the flow). We conducted Lagrangian numerical simulations of the process for different space dimensions d and revealed structures responsible for the transport, which are passive scalar tongues pulled from the diffusive boundary layer to the bulk. We investigated statistical properties of the passive scalar and of the passive scalar integrated along the wall. Moments of both objects demonstrate scaling behavior outside the diffusive boundary layer. We propose an analytic scheme for the passive scalar statistics, explaining the features observed numerically.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N23fd2ea8b99d4691a5cb75353bdab6fb
36 Nb04af45439434ab4be897f6e42c7d482
37 sg:journal.1295107
38 schema:name Passive scalar transport in peripheral regions of random flows
39 schema:pagination 352
40 schema:productId N002b0dfd0a924077965898a758c80ced
41 N2579ab15b14244cda75756603f2afbe5
42 N591624494dce4a1a97593920a31e0abc
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030143567
44 https://doi.org/10.1134/s1063776111080048
45 schema:sdDatePublished 2019-04-10T22:30
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nd087ed6d1fe64b45808b72244dfd05a9
48 schema:url http://link.springer.com/10.1134%2FS1063776111080048
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N002b0dfd0a924077965898a758c80ced schema:name dimensions_id
53 schema:value pub.1030143567
54 rdf:type schema:PropertyValue
55 N23fd2ea8b99d4691a5cb75353bdab6fb schema:issueNumber 2
56 rdf:type schema:PublicationIssue
57 N2579ab15b14244cda75756603f2afbe5 schema:name readcube_id
58 schema:value 8f99e3a9d8ee1f7e6dbadcc6c867ed216b8d7930e2db2c20f684b9685e210a41
59 rdf:type schema:PropertyValue
60 N591624494dce4a1a97593920a31e0abc schema:name doi
61 schema:value 10.1134/s1063776111080048
62 rdf:type schema:PropertyValue
63 Naec6186cfe2d49118304e14cbc22373e rdf:first sg:person.015601146673.28
64 rdf:rest Nffd13e5d802744f883f43ed9ce35ac93
65 Nb04af45439434ab4be897f6e42c7d482 schema:volumeNumber 113
66 rdf:type schema:PublicationVolume
67 Nd087ed6d1fe64b45808b72244dfd05a9 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nffd13e5d802744f883f43ed9ce35ac93 rdf:first sg:person.01175464362.06
70 rdf:rest rdf:nil
71 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
72 schema:name Engineering
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
75 schema:name Interdisciplinary Engineering
76 rdf:type schema:DefinedTerm
77 sg:journal.1295107 schema:issn 1063-7761
78 1090-6509
79 schema:name Journal of Experimental and Theoretical Physics
80 rdf:type schema:Periodical
81 sg:person.01175464362.06 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
82 schema:familyName Lebedev
83 schema:givenName V.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175464362.06
85 rdf:type schema:Person
86 sg:person.015601146673.28 schema:affiliation https://www.grid.ac/institutes/grid.4605.7
87 schema:familyName Chernykh
88 schema:givenName A.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015601146673.28
90 rdf:type schema:Person
91 sg:pub.10.1007/978-94-010-9018-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043968636
92 https://doi.org/10.1007/978-94-010-9018-6
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s00348-007-0429-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028138400
95 https://doi.org/10.1007/s00348-007-0429-5
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s10652-006-9007-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001342447
98 https://doi.org/10.1007/s10652-006-9007-2
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/35011019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037654713
101 https://doi.org/10.1038/35011019
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/35015000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051349076
104 https://doi.org/10.1038/35015000
105 rdf:type schema:CreativeWork
106 sg:pub.10.1134/s0021364008120072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021466914
107 https://doi.org/10.1134/s0021364008120072
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1017/s0022112000001865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053839997
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1017/s0022112007007525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053940694
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1063/1.1699986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057770430
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.2140024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007013595
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1063/1.2227005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057849042
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1063/1.2732234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007342094
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.2793145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006087218
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.868826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058120997
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.870089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035345711
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1088/1468-5248/3/1/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008496205
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreve.52.4924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020216779
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physreve.69.036301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004192910
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.75.3834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053553000
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.90.034501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035243523
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.90.134501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826519
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.92.164501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016744587
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.95.258101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831392
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/revmodphys.73.913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026773949
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1146/annurev.fluid.32.1.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017399233
146 rdf:type schema:CreativeWork
147 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
148 schema:name Landau Institute for Theoretical Physics, Russian Academy of Sciences, 117334, Moscow, Russia
149 Moscow Institute of Physics and Technology, 141700, Moscow, Russia
150 rdf:type schema:Organization
151 https://www.grid.ac/institutes/grid.4605.7 schema:alternateName Novosibirsk State University
152 schema:name Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
153 Novosibirsk State University, 630090, Novosibirsk, Russia
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...