Temperature-induced transformations in hydrogenated and fluorinated single-wall carbon nanotubes studied by Raman scattering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-06

AUTHORS

K. P. Meletov, A. A. Maksimov, I. I. Tartakovskii, J. Arvanitidis, D. Christofilos, G. A. Kourouklis

ABSTRACT

Raman spectra of hydrogenated and fluorinated single-wall carbon nanotubes (SWCNTs) are measured at ambient temperature before and after heat treatment. The spectra of the as-prepared hydrogenated SWCNTs show a giant structureless band in the visible region that screens the Raman peaks related to the carbon atom vibrations. The onset of this strong band follows the excitation laser line, which is typical of hot luminescence. The intensity of the luminescence background decreases exponentially with the annealing time, while the dependence of the luminescence decay time constant on the annealing temperature is of the Arrhenius type with the activation energy Ea = 465 ± 44 meV. The luminescence background in the Raman spectra of the fluorinated SWCNTs is comparable with the Raman peak intensity and decreases exponentially with the annealing time. The dependence of the decay time constant on the temperature is again of the Arrhenius type with the activation energy Ea = 90 ± 8 meV. The appearance of hot luminescence is related to the upshift of the fundamental energy gap in functionalized SWCNTs and the structural disorder induced by random binding of hydrogen or fluorine atoms. The luminescence background disappears upon annealing in vacuum or in air after removal of hydrogen (fluorine), while the annealed samples still demonstrate large structural disorder. More... »

PAGES

979-985

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063776111040091

DOI

http://dx.doi.org/10.1134/s1063776111040091

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025141190


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418975.6", 
          "name": [
            "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meletov", 
        "givenName": "K. P.", 
        "id": "sg:person.013013343234.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013013343234.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418975.6", 
          "name": [
            "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maksimov", 
        "givenName": "A. A.", 
        "id": "sg:person.013207527022.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013207527022.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418975.6", 
          "name": [
            "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tartakovskii", 
        "givenName": "I. I.", 
        "id": "sg:person.016654515444.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016654515444.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Sciences, Technological Educational Institute of Thessaloniki, 57400, Sindos, Greece", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Physics Division, School of Technology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece", 
            "Department of Applied Sciences, Technological Educational Institute of Thessaloniki, 57400, Sindos, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arvanitidis", 
        "givenName": "J.", 
        "id": "sg:person.01327557144.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327557144.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physics Division, School of Technology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece", 
          "id": "http://www.grid.ac/institutes/grid.4793.9", 
          "name": [
            "Physics Division, School of Technology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Christofilos", 
        "givenName": "D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physics Division, School of Technology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece", 
          "id": "http://www.grid.ac/institutes/grid.4793.9", 
          "name": [
            "Physics Division, School of Technology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kourouklis", 
        "givenName": "G. A.", 
        "id": "sg:person.01044723236.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044723236.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/386377a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019060429", 
          "https://doi.org/10.1038/386377a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-06", 
    "datePublishedReg": "2011-06-01", 
    "description": "Raman spectra of hydrogenated and fluorinated single-wall carbon nanotubes (SWCNTs) are measured at ambient temperature before and after heat treatment. The spectra of the as-prepared hydrogenated SWCNTs show a giant structureless band in the visible region that screens the Raman peaks related to the carbon atom vibrations. The onset of this strong band follows the excitation laser line, which is typical of hot luminescence. The intensity of the luminescence background decreases exponentially with the annealing time, while the dependence of the luminescence decay time constant on the annealing temperature is of the Arrhenius type with the activation energy Ea = 465 \u00b1 44 meV. The luminescence background in the Raman spectra of the fluorinated SWCNTs is comparable with the Raman peak intensity and decreases exponentially with the annealing time. The dependence of the decay time constant on the temperature is again of the Arrhenius type with the activation energy Ea = 90 \u00b1 8 meV. The appearance of hot luminescence is related to the upshift of the fundamental energy gap in functionalized SWCNTs and the structural disorder induced by random binding of hydrogen or fluorine atoms. The luminescence background disappears upon annealing in vacuum or in air after removal of hydrogen (fluorine), while the annealed samples still demonstrate large structural disorder.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063776111040091", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "112"
      }
    ], 
    "keywords": [
      "single-wall carbon nanotubes", 
      "luminescence background", 
      "functionalized single-wall carbon nanotubes", 
      "carbon nanotubes", 
      "Raman spectra", 
      "activation energy Ea", 
      "fluorinated single-wall carbon nanotubes", 
      "excitation laser line", 
      "luminescence decay time", 
      "removal of hydrogen", 
      "Raman peak intensity", 
      "energy Ea", 
      "fluorine atoms", 
      "structural disorder", 
      "visible region", 
      "Arrhenius type", 
      "temperature-induced transformation", 
      "strong band", 
      "energy gap", 
      "Raman peaks", 
      "large structural disorder", 
      "nanotubes", 
      "structureless band", 
      "luminescence", 
      "random binding", 
      "hydrogen", 
      "decay time", 
      "peak intensity", 
      "spectra", 
      "ambient temperature", 
      "fundamental energy gap", 
      "heat treatment", 
      "annealing temperature", 
      "annealing time", 
      "Raman", 
      "temperature", 
      "atoms", 
      "atom vibrations", 
      "EA", 
      "laser lines", 
      "band", 
      "vacuum", 
      "dependence", 
      "upshift", 
      "binding", 
      "removal", 
      "air", 
      "peak", 
      "intensity", 
      "hot luminescence", 
      "samples", 
      "transformation", 
      "time", 
      "types", 
      "vibration", 
      "gap", 
      "decrease", 
      "appearance", 
      "treatment", 
      "lines", 
      "region", 
      "background", 
      "onset", 
      "disorders"
    ], 
    "name": "Temperature-induced transformations in hydrogenated and fluorinated single-wall carbon nanotubes studied by Raman scattering", 
    "pagination": "979-985", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025141190"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063776111040091"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063776111040091", 
      "https://app.dimensions.ai/details/publication/pub.1025141190"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_548.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063776111040091"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063776111040091'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063776111040091'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063776111040091'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063776111040091'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      22 PREDICATES      91 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063776111040091 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author Nae6aa38fd17e4430a86c52d479f18ab6
4 schema:citation sg:pub.10.1038/386377a0
5 schema:datePublished 2011-06
6 schema:datePublishedReg 2011-06-01
7 schema:description Raman spectra of hydrogenated and fluorinated single-wall carbon nanotubes (SWCNTs) are measured at ambient temperature before and after heat treatment. The spectra of the as-prepared hydrogenated SWCNTs show a giant structureless band in the visible region that screens the Raman peaks related to the carbon atom vibrations. The onset of this strong band follows the excitation laser line, which is typical of hot luminescence. The intensity of the luminescence background decreases exponentially with the annealing time, while the dependence of the luminescence decay time constant on the annealing temperature is of the Arrhenius type with the activation energy Ea = 465 ± 44 meV. The luminescence background in the Raman spectra of the fluorinated SWCNTs is comparable with the Raman peak intensity and decreases exponentially with the annealing time. The dependence of the decay time constant on the temperature is again of the Arrhenius type with the activation energy Ea = 90 ± 8 meV. The appearance of hot luminescence is related to the upshift of the fundamental energy gap in functionalized SWCNTs and the structural disorder induced by random binding of hydrogen or fluorine atoms. The luminescence background disappears upon annealing in vacuum or in air after removal of hydrogen (fluorine), while the annealed samples still demonstrate large structural disorder.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N28713627b1d44333b39158e9499cde37
12 Nbacbfbc047604b07aeb8927359e9ad99
13 sg:journal.1295107
14 schema:keywords Arrhenius type
15 EA
16 Raman
17 Raman peak intensity
18 Raman peaks
19 Raman spectra
20 activation energy Ea
21 air
22 ambient temperature
23 annealing temperature
24 annealing time
25 appearance
26 atom vibrations
27 atoms
28 background
29 band
30 binding
31 carbon nanotubes
32 decay time
33 decrease
34 dependence
35 disorders
36 energy Ea
37 energy gap
38 excitation laser line
39 fluorinated single-wall carbon nanotubes
40 fluorine atoms
41 functionalized single-wall carbon nanotubes
42 fundamental energy gap
43 gap
44 heat treatment
45 hot luminescence
46 hydrogen
47 intensity
48 large structural disorder
49 laser lines
50 lines
51 luminescence
52 luminescence background
53 luminescence decay time
54 nanotubes
55 onset
56 peak
57 peak intensity
58 random binding
59 region
60 removal
61 removal of hydrogen
62 samples
63 single-wall carbon nanotubes
64 spectra
65 strong band
66 structural disorder
67 structureless band
68 temperature
69 temperature-induced transformation
70 time
71 transformation
72 treatment
73 types
74 upshift
75 vacuum
76 vibration
77 visible region
78 schema:name Temperature-induced transformations in hydrogenated and fluorinated single-wall carbon nanotubes studied by Raman scattering
79 schema:pagination 979-985
80 schema:productId N19ad22fac1e648b794b77884d470ac82
81 Nb570ee5a2129404b9ead5cf205b04e95
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025141190
83 https://doi.org/10.1134/s1063776111040091
84 schema:sdDatePublished 2022-05-20T07:27
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N6b517c136532489296231d896b4dacb1
87 schema:url https://doi.org/10.1134/s1063776111040091
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N19ad22fac1e648b794b77884d470ac82 schema:name dimensions_id
92 schema:value pub.1025141190
93 rdf:type schema:PropertyValue
94 N28713627b1d44333b39158e9499cde37 schema:issueNumber 6
95 rdf:type schema:PublicationIssue
96 N2e9f96309bb4485ba4c951bb097d87ad rdf:first N4fc4fa58baef4cc5b0c36bbed556756e
97 rdf:rest N91ae6d81987c41b9b476498f78e2ec62
98 N30c1cf68eb474b459e6922c59a9851f0 rdf:first sg:person.01327557144.24
99 rdf:rest N2e9f96309bb4485ba4c951bb097d87ad
100 N4fc4fa58baef4cc5b0c36bbed556756e schema:affiliation grid-institutes:grid.4793.9
101 schema:familyName Christofilos
102 schema:givenName D.
103 rdf:type schema:Person
104 N6b517c136532489296231d896b4dacb1 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N91ae6d81987c41b9b476498f78e2ec62 rdf:first sg:person.01044723236.11
107 rdf:rest rdf:nil
108 Nae6aa38fd17e4430a86c52d479f18ab6 rdf:first sg:person.013013343234.53
109 rdf:rest Neb23989546094defa7cfb95c43c03b81
110 Nb570ee5a2129404b9ead5cf205b04e95 schema:name doi
111 schema:value 10.1134/s1063776111040091
112 rdf:type schema:PropertyValue
113 Nbacbfbc047604b07aeb8927359e9ad99 schema:volumeNumber 112
114 rdf:type schema:PublicationVolume
115 Nc634b3e6d09e4679a5dc6b9e71d1d079 rdf:first sg:person.016654515444.59
116 rdf:rest N30c1cf68eb474b459e6922c59a9851f0
117 Neb23989546094defa7cfb95c43c03b81 rdf:first sg:person.013207527022.24
118 rdf:rest Nc634b3e6d09e4679a5dc6b9e71d1d079
119 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
120 schema:name Mathematical Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
123 schema:name Physical Sciences
124 rdf:type schema:DefinedTerm
125 sg:journal.1295107 schema:issn 1063-7761
126 1090-6509
127 schema:name Journal of Experimental and Theoretical Physics
128 schema:publisher Pleiades Publishing
129 rdf:type schema:Periodical
130 sg:person.01044723236.11 schema:affiliation grid-institutes:grid.4793.9
131 schema:familyName Kourouklis
132 schema:givenName G. A.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044723236.11
134 rdf:type schema:Person
135 sg:person.013013343234.53 schema:affiliation grid-institutes:grid.418975.6
136 schema:familyName Meletov
137 schema:givenName K. P.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013013343234.53
139 rdf:type schema:Person
140 sg:person.013207527022.24 schema:affiliation grid-institutes:grid.418975.6
141 schema:familyName Maksimov
142 schema:givenName A. A.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013207527022.24
144 rdf:type schema:Person
145 sg:person.01327557144.24 schema:affiliation grid-institutes:None
146 schema:familyName Arvanitidis
147 schema:givenName J.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327557144.24
149 rdf:type schema:Person
150 sg:person.016654515444.59 schema:affiliation grid-institutes:grid.418975.6
151 schema:familyName Tartakovskii
152 schema:givenName I. I.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016654515444.59
154 rdf:type schema:Person
155 sg:pub.10.1038/386377a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019060429
156 https://doi.org/10.1038/386377a0
157 rdf:type schema:CreativeWork
158 grid-institutes:None schema:alternateName Department of Applied Sciences, Technological Educational Institute of Thessaloniki, 57400, Sindos, Greece
159 schema:name Department of Applied Sciences, Technological Educational Institute of Thessaloniki, 57400, Sindos, Greece
160 Physics Division, School of Technology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
161 rdf:type schema:Organization
162 grid-institutes:grid.418975.6 schema:alternateName Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
163 schema:name Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
164 rdf:type schema:Organization
165 grid-institutes:grid.4793.9 schema:alternateName Physics Division, School of Technology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
166 schema:name Physics Division, School of Technology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...