Nonmonotonic behavior of magnetoresistance, R(H) hysteresis, and low-temperature heat capacity of the BaPb0.75Bi0.25O3 superconductor in a magnetic field: Possible manifestations ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-04

AUTHORS

D. A. Balaev, A. A. Dubrovskiy, S. I. Popkov, K. A. Shaikhutdinov, O. N. Mart’yanov, M. I. Petrov

ABSTRACT

The transport properties (R(T) and R(H) dependences at various values of the transport current in magnetic fields up to 65 kOe) and low-temperature heat capacity in magnetic fields up to 90 kOe of the BaPb0.75Bi0.25O3 superconductor (TC ≈ 11.3 K) are investigated with the goal of clarifying the mechanisms determining the nonmonotonic behavior and hysteresis of its magnetoresistance R(H). The type of R(H) hysteretic dependences for BaPb0.75Bi0.25O3 is analogous to that observed in granular high-Tc superconductors (HTSCs); however, unlike classical HTSC systems, the field width of the magnetoresistance hysteresis loop for polycrystalline BaPb0.75Bi0.25O3 depends on the transport current. This means that although the mechanisms responsible for the magnetoresistance hysteresis (the influence of the magnetic flux trapped in superconducting regions on the effective field in Josephson interlayers) are identical in these objects, the transport current in BaPb0.75Bi0.25O3 may considerably affect the diamagnetic response of the superconductor. A considerable effect of transport current on the field in which the R(H) dependences have a peak and exhibit hysterestic properties is observed. Such a behavior can be adequately interpreted using the model of the spatially inhomogeneous superconductor-insulator state proposed by Gorbatsevich et al. [JETP Lett. 52, 95 (1990)]. The nonmonotonic dependence of quantity C/T (C is the heat capacity) on the magnetic field discovered in the present study also agrees with the conclusions based on this model. More... »

PAGES

584-593

References to SciGraph publications

  • 1980-06. Superconductivity in the BaPb1−xBixO3 system in JOURNAL OF PHYSICS D
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1063776110040059

    DOI

    http://dx.doi.org/10.1134/s1063776110040059

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044064145


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Siberian Federal University", 
              "id": "https://www.grid.ac/institutes/grid.412592.9", 
              "name": [
                "Kirenskii Institute of Physics, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia", 
                "Siberian Federal University, 660041, Krasnoyarsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Balaev", 
            "givenName": "D. A.", 
            "id": "sg:person.016644574131.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016644574131.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Kirenskii Institute of Physics, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dubrovskiy", 
            "givenName": "A. A.", 
            "id": "sg:person.011700636120.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011700636120.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Siberian Federal University", 
              "id": "https://www.grid.ac/institutes/grid.412592.9", 
              "name": [
                "Kirenskii Institute of Physics, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia", 
                "Siberian Federal University, 660041, Krasnoyarsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Popkov", 
            "givenName": "S. I.", 
            "id": "sg:person.012051026135.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012051026135.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Siberian Federal University", 
              "id": "https://www.grid.ac/institutes/grid.412592.9", 
              "name": [
                "Kirenskii Institute of Physics, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia", 
                "Siberian Federal University, 660041, Krasnoyarsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shaikhutdinov", 
            "givenName": "K. A.", 
            "id": "sg:person.011534463731.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534463731.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boreskov Institute of Catalysis", 
              "id": "https://www.grid.ac/institutes/grid.418421.a", 
              "name": [
                "Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mart\u2019yanov", 
            "givenName": "O. N.", 
            "id": "sg:person.015176010475.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015176010475.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Kirenskii Institute of Physics, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Petrov", 
            "givenName": "M. I.", 
            "id": "sg:person.016243620370.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016243620370.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0038-1098(75)90327-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000080388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0038-1098(75)90327-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000080388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00886008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012194342", 
              "https://doi.org/10.1007/bf00886008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-2048/14/9/333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017884078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0921-4534(89)90223-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033954051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0921-4534(90)90137-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051231778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0921-4534(90)90137-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051231778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.29.1493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060533987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.29.1493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060533987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.61.14804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060595386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.61.14804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060595386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.71.1740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060807544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.71.1740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060807544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3367/ufnr.0150.198612g.0599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071217906"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-04", 
        "datePublishedReg": "2010-04-01", 
        "description": "The transport properties (R(T) and R(H) dependences at various values of the transport current in magnetic fields up to 65 kOe) and low-temperature heat capacity in magnetic fields up to 90 kOe of the BaPb0.75Bi0.25O3 superconductor (TC \u2248 11.3 K) are investigated with the goal of clarifying the mechanisms determining the nonmonotonic behavior and hysteresis of its magnetoresistance R(H). The type of R(H) hysteretic dependences for BaPb0.75Bi0.25O3 is analogous to that observed in granular high-Tc superconductors (HTSCs); however, unlike classical HTSC systems, the field width of the magnetoresistance hysteresis loop for polycrystalline BaPb0.75Bi0.25O3 depends on the transport current. This means that although the mechanisms responsible for the magnetoresistance hysteresis (the influence of the magnetic flux trapped in superconducting regions on the effective field in Josephson interlayers) are identical in these objects, the transport current in BaPb0.75Bi0.25O3 may considerably affect the diamagnetic response of the superconductor. A considerable effect of transport current on the field in which the R(H) dependences have a peak and exhibit hysterestic properties is observed. Such a behavior can be adequately interpreted using the model of the spatially inhomogeneous superconductor-insulator state proposed by Gorbatsevich et al. [JETP Lett. 52, 95 (1990)]. The nonmonotonic dependence of quantity C/T (C is the heat capacity) on the magnetic field discovered in the present study also agrees with the conclusions based on this model.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1063776110040059", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295107", 
            "issn": [
              "1063-7761", 
              "1090-6509"
            ], 
            "name": "Journal of Experimental and Theoretical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "110"
          }
        ], 
        "name": "Nonmonotonic behavior of magnetoresistance, R(H) hysteresis, and low-temperature heat capacity of the BaPb0.75Bi0.25O3 superconductor in a magnetic field: Possible manifestations of phase separation", 
        "pagination": "584-593", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d1e47d9a5969f36247a8735f003a9865f7d745ad7a8736f48551211d6dcb1b20"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1063776110040059"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044064145"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1063776110040059", 
          "https://app.dimensions.ai/details/publication/pub.1044064145"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113670_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134%2FS1063776110040059"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063776110040059'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063776110040059'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063776110040059'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063776110040059'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1063776110040059 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N6ad0a971f9ef4cb3ac9ba67e595474cf
    4 schema:citation sg:pub.10.1007/bf00886008
    5 https://doi.org/10.1016/0038-1098(75)90327-0
    6 https://doi.org/10.1016/0921-4534(89)90223-2
    7 https://doi.org/10.1016/0921-4534(90)90137-4
    8 https://doi.org/10.1088/0953-2048/14/9/333
    9 https://doi.org/10.1103/physrevb.29.1493
    10 https://doi.org/10.1103/physrevb.61.14804
    11 https://doi.org/10.1103/physrevlett.71.1740
    12 https://doi.org/10.3367/ufnr.0150.198612g.0599
    13 schema:datePublished 2010-04
    14 schema:datePublishedReg 2010-04-01
    15 schema:description The transport properties (R(T) and R(H) dependences at various values of the transport current in magnetic fields up to 65 kOe) and low-temperature heat capacity in magnetic fields up to 90 kOe of the BaPb0.75Bi0.25O3 superconductor (TC ≈ 11.3 K) are investigated with the goal of clarifying the mechanisms determining the nonmonotonic behavior and hysteresis of its magnetoresistance R(H). The type of R(H) hysteretic dependences for BaPb0.75Bi0.25O3 is analogous to that observed in granular high-Tc superconductors (HTSCs); however, unlike classical HTSC systems, the field width of the magnetoresistance hysteresis loop for polycrystalline BaPb0.75Bi0.25O3 depends on the transport current. This means that although the mechanisms responsible for the magnetoresistance hysteresis (the influence of the magnetic flux trapped in superconducting regions on the effective field in Josephson interlayers) are identical in these objects, the transport current in BaPb0.75Bi0.25O3 may considerably affect the diamagnetic response of the superconductor. A considerable effect of transport current on the field in which the R(H) dependences have a peak and exhibit hysterestic properties is observed. Such a behavior can be adequately interpreted using the model of the spatially inhomogeneous superconductor-insulator state proposed by Gorbatsevich et al. [JETP Lett. 52, 95 (1990)]. The nonmonotonic dependence of quantity C/T (C is the heat capacity) on the magnetic field discovered in the present study also agrees with the conclusions based on this model.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N07e3bb890751440384a787f5c1c9f59c
    20 Nefc39803bf1c487f8c60eeb1c614241a
    21 sg:journal.1295107
    22 schema:name Nonmonotonic behavior of magnetoresistance, R(H) hysteresis, and low-temperature heat capacity of the BaPb0.75Bi0.25O3 superconductor in a magnetic field: Possible manifestations of phase separation
    23 schema:pagination 584-593
    24 schema:productId N2913a4b57e9d4a9b863031fba5a48554
    25 N5ffc0bd64c91476aaabaef29c6c4b64e
    26 Nbe1d87b5a62240f48cc80d8a7f608172
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044064145
    28 https://doi.org/10.1134/s1063776110040059
    29 schema:sdDatePublished 2019-04-11T10:36
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N128d842e5c2446d5bfdd72882e9ea7b3
    32 schema:url http://link.springer.com/10.1134%2FS1063776110040059
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N07e3bb890751440384a787f5c1c9f59c schema:volumeNumber 110
    37 rdf:type schema:PublicationVolume
    38 N128d842e5c2446d5bfdd72882e9ea7b3 schema:name Springer Nature - SN SciGraph project
    39 rdf:type schema:Organization
    40 N215bd0fd6eb94361aa7c03639fae320e rdf:first sg:person.012051026135.69
    41 rdf:rest Ne8d983684ab64c24841a88800864a09c
    42 N2913a4b57e9d4a9b863031fba5a48554 schema:name dimensions_id
    43 schema:value pub.1044064145
    44 rdf:type schema:PropertyValue
    45 N527b2083e646438da593849eedc4dd5e rdf:first sg:person.015176010475.57
    46 rdf:rest Ne6aa50a99bb24a988f48db0554b26dfb
    47 N5ffc0bd64c91476aaabaef29c6c4b64e schema:name doi
    48 schema:value 10.1134/s1063776110040059
    49 rdf:type schema:PropertyValue
    50 N6ad0a971f9ef4cb3ac9ba67e595474cf rdf:first sg:person.016644574131.64
    51 rdf:rest N95c6d97d00e24ad1903ab9b27d702ad2
    52 N95c6d97d00e24ad1903ab9b27d702ad2 rdf:first sg:person.011700636120.06
    53 rdf:rest N215bd0fd6eb94361aa7c03639fae320e
    54 Nbe1d87b5a62240f48cc80d8a7f608172 schema:name readcube_id
    55 schema:value d1e47d9a5969f36247a8735f003a9865f7d745ad7a8736f48551211d6dcb1b20
    56 rdf:type schema:PropertyValue
    57 Ne6aa50a99bb24a988f48db0554b26dfb rdf:first sg:person.016243620370.10
    58 rdf:rest rdf:nil
    59 Ne8d983684ab64c24841a88800864a09c rdf:first sg:person.011534463731.69
    60 rdf:rest N527b2083e646438da593849eedc4dd5e
    61 Nefc39803bf1c487f8c60eeb1c614241a schema:issueNumber 4
    62 rdf:type schema:PublicationIssue
    63 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Engineering
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Materials Engineering
    68 rdf:type schema:DefinedTerm
    69 sg:journal.1295107 schema:issn 1063-7761
    70 1090-6509
    71 schema:name Journal of Experimental and Theoretical Physics
    72 rdf:type schema:Periodical
    73 sg:person.011534463731.69 schema:affiliation https://www.grid.ac/institutes/grid.412592.9
    74 schema:familyName Shaikhutdinov
    75 schema:givenName K. A.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534463731.69
    77 rdf:type schema:Person
    78 sg:person.011700636120.06 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    79 schema:familyName Dubrovskiy
    80 schema:givenName A. A.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011700636120.06
    82 rdf:type schema:Person
    83 sg:person.012051026135.69 schema:affiliation https://www.grid.ac/institutes/grid.412592.9
    84 schema:familyName Popkov
    85 schema:givenName S. I.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012051026135.69
    87 rdf:type schema:Person
    88 sg:person.015176010475.57 schema:affiliation https://www.grid.ac/institutes/grid.418421.a
    89 schema:familyName Mart’yanov
    90 schema:givenName O. N.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015176010475.57
    92 rdf:type schema:Person
    93 sg:person.016243620370.10 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    94 schema:familyName Petrov
    95 schema:givenName M. I.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016243620370.10
    97 rdf:type schema:Person
    98 sg:person.016644574131.64 schema:affiliation https://www.grid.ac/institutes/grid.412592.9
    99 schema:familyName Balaev
    100 schema:givenName D. A.
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016644574131.64
    102 rdf:type schema:Person
    103 sg:pub.10.1007/bf00886008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012194342
    104 https://doi.org/10.1007/bf00886008
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/0038-1098(75)90327-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000080388
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/0921-4534(89)90223-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033954051
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/0921-4534(90)90137-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051231778
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1088/0953-2048/14/9/333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017884078
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1103/physrevb.29.1493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060533987
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1103/physrevb.61.14804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060595386
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1103/physrevlett.71.1740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807544
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.3367/ufnr.0150.198612g.0599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071217906
    121 rdf:type schema:CreativeWork
    122 https://www.grid.ac/institutes/grid.412592.9 schema:alternateName Siberian Federal University
    123 schema:name Kirenskii Institute of Physics, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
    124 Siberian Federal University, 660041, Krasnoyarsk, Russia
    125 rdf:type schema:Organization
    126 https://www.grid.ac/institutes/grid.418421.a schema:alternateName Boreskov Institute of Catalysis
    127 schema:name Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
    128 rdf:type schema:Organization
    129 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    130 schema:name Kirenskii Institute of Physics, Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
    131 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...