The Stefan problem of solidification of ternary systems in the presence of moving phase transition regions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-05

AUTHORS

D. V. Alexandrov, A. A. Ivanov

ABSTRACT

The process of solidification of ternary systems in the presence of moving phase transition regions has been investigated theoretically in terms of the nonlinear equation of the liquidus surface. A mathematical model is developed and an approximate analytical solution to the Stefan problem is constructed for a linear temperature profile in two-phase zones. The temperature and impurity concentration distributions are determined, the solid-phase fractions in the phase transition regions are obtained, and the laws of motion of their boundaries are established. It is demonstrated that all boundaries move in accordance with the laws of direct proportionality to the square root of time, which is a general property of self-similar processes. It is substantiated that the concentration of an impurity of the substance undergoing a phase transition only in the cotectic zone increases in this zone and decreases in the main two-phase zone in which the other component of the substance undergoes a phase transition. In the process, the concentration reaches a maximum at the interface between the main two-phase zone and the cotectic two-phase zone. The revealed laws of motion of the outer boundaries of the entire phase transition region do not depend on the amount of the components under consideration and hold true for crystallization of a multicomponent system. More... »

PAGES

821-829

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063776109050100

DOI

http://dx.doi.org/10.1134/s1063776109050100

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008531169


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Gorkiy Ural State University, pr. Lenina 51, 620083, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alexandrov", 
        "givenName": "D. V.", 
        "id": "sg:person.01147172415.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147172415.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Gorkiy Ural State University, pr. Lenina 51, 620083, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivanov", 
        "givenName": "A. A.", 
        "id": "sg:person.011363411010.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011363411010.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0017-9310(97)00041-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000705059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb085ib05p02573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002038496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1999jc900269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002121787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/petroj/39.5.1063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002497234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1970.0078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003272364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/314703a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010500866", 
          "https://doi.org/10.1038/314703a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ea.12.050184.000303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012675163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(80)90038-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041463016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0273(80)90038-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041463016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112003004129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053750834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112090000453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053789823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112004003052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053804999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112074002527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054017783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112074002527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054017783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112074002527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054017783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1713333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057781027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3189/172756406781811213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071117623"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-05", 
    "datePublishedReg": "2009-05-01", 
    "description": "The process of solidification of ternary systems in the presence of moving phase transition regions has been investigated theoretically in terms of the nonlinear equation of the liquidus surface. A mathematical model is developed and an approximate analytical solution to the Stefan problem is constructed for a linear temperature profile in two-phase zones. The temperature and impurity concentration distributions are determined, the solid-phase fractions in the phase transition regions are obtained, and the laws of motion of their boundaries are established. It is demonstrated that all boundaries move in accordance with the laws of direct proportionality to the square root of time, which is a general property of self-similar processes. It is substantiated that the concentration of an impurity of the substance undergoing a phase transition only in the cotectic zone increases in this zone and decreases in the main two-phase zone in which the other component of the substance undergoes a phase transition. In the process, the concentration reaches a maximum at the interface between the main two-phase zone and the cotectic two-phase zone. The revealed laws of motion of the outer boundaries of the entire phase transition region do not depend on the amount of the components under consideration and hold true for crystallization of a multicomponent system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063776109050100", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "108"
      }
    ], 
    "name": "The Stefan problem of solidification of ternary systems in the presence of moving phase transition regions", 
    "pagination": "821-829", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "28a4e7446e1f360eb615c9e5973e7da4d3eea86557a472aad56e913f48d2b05a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063776109050100"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008531169"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063776109050100", 
      "https://app.dimensions.ai/details/publication/pub.1008531169"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64097_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063776109050100"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063776109050100'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063776109050100'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063776109050100'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063776109050100'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063776109050100 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author N36a1895f77e8487e8a70daacfda0ac49
4 schema:citation sg:pub.10.1038/314703a0
5 https://doi.org/10.1016/0377-0273(80)90038-4
6 https://doi.org/10.1016/s0017-9310(97)00041-0
7 https://doi.org/10.1017/s0022112003004129
8 https://doi.org/10.1017/s0022112004003052
9 https://doi.org/10.1017/s0022112074002527
10 https://doi.org/10.1017/s0022112090000453
11 https://doi.org/10.1029/1999jc900269
12 https://doi.org/10.1029/jb085ib05p02573
13 https://doi.org/10.1063/1.1713333
14 https://doi.org/10.1093/petroj/39.5.1063
15 https://doi.org/10.1098/rsta.1970.0078
16 https://doi.org/10.1146/annurev.ea.12.050184.000303
17 https://doi.org/10.3189/172756406781811213
18 schema:datePublished 2009-05
19 schema:datePublishedReg 2009-05-01
20 schema:description The process of solidification of ternary systems in the presence of moving phase transition regions has been investigated theoretically in terms of the nonlinear equation of the liquidus surface. A mathematical model is developed and an approximate analytical solution to the Stefan problem is constructed for a linear temperature profile in two-phase zones. The temperature and impurity concentration distributions are determined, the solid-phase fractions in the phase transition regions are obtained, and the laws of motion of their boundaries are established. It is demonstrated that all boundaries move in accordance with the laws of direct proportionality to the square root of time, which is a general property of self-similar processes. It is substantiated that the concentration of an impurity of the substance undergoing a phase transition only in the cotectic zone increases in this zone and decreases in the main two-phase zone in which the other component of the substance undergoes a phase transition. In the process, the concentration reaches a maximum at the interface between the main two-phase zone and the cotectic two-phase zone. The revealed laws of motion of the outer boundaries of the entire phase transition region do not depend on the amount of the components under consideration and hold true for crystallization of a multicomponent system.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N4740e686d7174b52a7a75b9212da676d
25 N848153ae1ffe4df0919887092e09fc29
26 sg:journal.1295107
27 schema:name The Stefan problem of solidification of ternary systems in the presence of moving phase transition regions
28 schema:pagination 821-829
29 schema:productId N740382beafb945cd8a061450d9df0192
30 N7b32370ed89947a59fe2eeaa723022d1
31 N8099b9fddfe24675b28c3fdead86abff
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008531169
33 https://doi.org/10.1134/s1063776109050100
34 schema:sdDatePublished 2019-04-11T09:24
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N90cf77900b0b453ebf26f8ba45c980cd
37 schema:url http://link.springer.com/10.1134%2FS1063776109050100
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N36a1895f77e8487e8a70daacfda0ac49 rdf:first sg:person.01147172415.39
42 rdf:rest Nba418f69145e4d5ebbb4d4255ea53198
43 N4740e686d7174b52a7a75b9212da676d schema:issueNumber 5
44 rdf:type schema:PublicationIssue
45 N740382beafb945cd8a061450d9df0192 schema:name doi
46 schema:value 10.1134/s1063776109050100
47 rdf:type schema:PropertyValue
48 N7b32370ed89947a59fe2eeaa723022d1 schema:name dimensions_id
49 schema:value pub.1008531169
50 rdf:type schema:PropertyValue
51 N8099b9fddfe24675b28c3fdead86abff schema:name readcube_id
52 schema:value 28a4e7446e1f360eb615c9e5973e7da4d3eea86557a472aad56e913f48d2b05a
53 rdf:type schema:PropertyValue
54 N848153ae1ffe4df0919887092e09fc29 schema:volumeNumber 108
55 rdf:type schema:PublicationVolume
56 N90cf77900b0b453ebf26f8ba45c980cd schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Na72de598a3c44f4d94e82a626ef7da28 schema:name Gorkiy Ural State University, pr. Lenina 51, 620083, Yekaterinburg, Russia
59 rdf:type schema:Organization
60 Nba418f69145e4d5ebbb4d4255ea53198 rdf:first sg:person.011363411010.98
61 rdf:rest rdf:nil
62 Nfd3b0852f8a84f0cad45769bad180c04 schema:name Gorkiy Ural State University, pr. Lenina 51, 620083, Yekaterinburg, Russia
63 rdf:type schema:Organization
64 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
65 schema:name Earth Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
68 schema:name Geology
69 rdf:type schema:DefinedTerm
70 sg:journal.1295107 schema:issn 1063-7761
71 1090-6509
72 schema:name Journal of Experimental and Theoretical Physics
73 rdf:type schema:Periodical
74 sg:person.011363411010.98 schema:affiliation Na72de598a3c44f4d94e82a626ef7da28
75 schema:familyName Ivanov
76 schema:givenName A. A.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011363411010.98
78 rdf:type schema:Person
79 sg:person.01147172415.39 schema:affiliation Nfd3b0852f8a84f0cad45769bad180c04
80 schema:familyName Alexandrov
81 schema:givenName D. V.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147172415.39
83 rdf:type schema:Person
84 sg:pub.10.1038/314703a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010500866
85 https://doi.org/10.1038/314703a0
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0377-0273(80)90038-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041463016
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/s0017-9310(97)00041-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000705059
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1017/s0022112003004129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053750834
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1017/s0022112004003052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053804999
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1017/s0022112074002527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054017783
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1017/s0022112090000453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053789823
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1029/1999jc900269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002121787
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1029/jb085ib05p02573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002038496
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.1713333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057781027
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1093/petroj/39.5.1063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002497234
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1098/rsta.1970.0078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003272364
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1146/annurev.ea.12.050184.000303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012675163
110 rdf:type schema:CreativeWork
111 https://doi.org/10.3189/172756406781811213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071117623
112 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...