Excitons in artificial quantum dots in the weak spatial confinement regime View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-12

AUTHORS

S. V. Zaitsev, M. K. Welsch, A. Forchel, G. Bacher

ABSTRACT

The exciton states in individual quantum dots prepared by the selective interdiffusion method in CdTe/CdMgTe quantum wells are studied by the methods of steady-state optical spectroscopy. The annealing-induced diffusion of Mg atoms inward to the bulk of the quantum well, which is significantly enhanced under the SiO2 mask, leads to a modulation of the bandgap width in the plane of the well, with the minima of the potential being located in the mask aperture areas. A lateral potential that arises, whose height is in the range 30–270 meV and characteristic scale is about 100 nm, efficiently localizes carriers, which form quasi-zero-dimensional excitons in the weak spatial confinement regime. Detailed magnetooptical studies show that Coulomb correlations play a significant role in the formation of exciton states under such a regime, which, in particular, manifests itself in the localization of the wavefunction of carriers on scales that are considerably smaller than the scale of the lateral potential. The particular features of the interlevel splitting, of the biexciton binding energy, and of the diamagnetic shift are discussed. A strong dependence of the interlevel relaxation on the interlevel splitting (the phonon neck) indicates that alternative relaxation mechanisms in the quantum dots studied are weak. The excited states are populated according to the Pauli principle, which indicates that it is possible to apply the shell model of many-exciton states to quantum dots under the weak spatial confinement conditions. More... »

PAGES

1241-1258

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063776107120163

DOI

http://dx.doi.org/10.1134/s1063776107120163

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001538350


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418975.6", 
          "name": [
            "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaitsev", 
        "givenName": "S. V.", 
        "id": "sg:person.011610151633.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Physik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-97074, W\u00fcrzburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Technische Physik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-97074, W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Welsch", 
        "givenName": "M. K.", 
        "id": "sg:person.013775777151.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775777151.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Physik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-97074, W\u00fcrzburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Technische Physik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-97074, W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forchel", 
        "givenName": "A.", 
        "id": "sg:person.0734455677.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734455677.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Werkstoffe der Elektrotechnik, Universit\u00e4t Duisburg-Essen, D-47057, Duisburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Lehrstuhl f\u00fcr Werkstoffe der Elektrotechnik, Universit\u00e4t Duisburg-Essen, D-47057, Duisburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bacher", 
        "givenName": "G.", 
        "id": "sg:person.0771451125.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771451125.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01390750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038010229", 
          "https://doi.org/10.1007/bf01390750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/22979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019126092", 
          "https://doi.org/10.1038/22979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35016020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023064871", 
          "https://doi.org/10.1038/35016020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-60650-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002772962", 
          "https://doi.org/10.1007/978-3-642-60650-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "The exciton states in individual quantum dots prepared by the selective interdiffusion method in CdTe/CdMgTe quantum wells are studied by the methods of steady-state optical spectroscopy. The annealing-induced diffusion of Mg atoms inward to the bulk of the quantum well, which is significantly enhanced under the SiO2 mask, leads to a modulation of the bandgap width in the plane of the well, with the minima of the potential being located in the mask aperture areas. A lateral potential that arises, whose height is in the range 30\u2013270 meV and characteristic scale is about 100 nm, efficiently localizes carriers, which form quasi-zero-dimensional excitons in the weak spatial confinement regime. Detailed magnetooptical studies show that Coulomb correlations play a significant role in the formation of exciton states under such a regime, which, in particular, manifests itself in the localization of the wavefunction of carriers on scales that are considerably smaller than the scale of the lateral potential. The particular features of the interlevel splitting, of the biexciton binding energy, and of the diamagnetic shift are discussed. A strong dependence of the interlevel relaxation on the interlevel splitting (the phonon neck) indicates that alternative relaxation mechanisms in the quantum dots studied are weak. The excited states are populated according to the Pauli principle, which indicates that it is possible to apply the shell model of many-exciton states to quantum dots under the weak spatial confinement conditions.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063776107120163", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "105"
      }
    ], 
    "keywords": [
      "exciton states", 
      "quantum dots", 
      "interlevel splitting", 
      "lateral potential", 
      "confinement regime", 
      "CdTe/CdMgTe quantum wells", 
      "zero-dimensional excitons", 
      "steady-state optical spectroscopy", 
      "artificial quantum dots", 
      "individual quantum dots", 
      "quantum wells", 
      "optical spectroscopy", 
      "diamagnetic shift", 
      "magnetooptical studies", 
      "alternative relaxation mechanisms", 
      "excited states", 
      "Coulomb correlations", 
      "interlevel relaxation", 
      "Pauli principle", 
      "relaxation mechanism", 
      "bandgap width", 
      "dots", 
      "Mg atoms", 
      "shell model", 
      "excitons", 
      "SiO2 mask", 
      "confinement conditions", 
      "strong dependence", 
      "interdiffusion method", 
      "characteristic scale", 
      "splitting", 
      "range 30", 
      "wells", 
      "biexcitons", 
      "quantum", 
      "regime", 
      "MeV", 
      "wavefunctions", 
      "atoms", 
      "state", 
      "aperture area", 
      "spectroscopy", 
      "energy", 
      "carriers", 
      "relaxation", 
      "width", 
      "dependence", 
      "bulk", 
      "plane", 
      "mask", 
      "shift", 
      "potential", 
      "diffusion", 
      "scale", 
      "modulation", 
      "particular features", 
      "minimum", 
      "formation", 
      "method", 
      "principles", 
      "height", 
      "features", 
      "significant role", 
      "correlation", 
      "mechanism", 
      "model", 
      "localization", 
      "conditions", 
      "study", 
      "role", 
      "area", 
      "selective interdiffusion method", 
      "CdMgTe quantum wells", 
      "annealing-induced diffusion", 
      "mask aperture areas", 
      "weak spatial confinement regime", 
      "spatial confinement regime", 
      "Detailed magnetooptical studies", 
      "wavefunction of carriers", 
      "weak spatial confinement conditions", 
      "spatial confinement conditions"
    ], 
    "name": "Excitons in artificial quantum dots in the weak spatial confinement regime", 
    "pagination": "1241-1258", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001538350"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063776107120163"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063776107120163", 
      "https://app.dimensions.ai/details/publication/pub.1001538350"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_445.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063776107120163"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063776107120163'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063776107120163'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063776107120163'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063776107120163'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      22 PREDICATES      111 URIs      99 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063776107120163 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nb7fc59d77d924d8caf73d20b16997058
4 schema:citation sg:pub.10.1007/978-3-642-60650-2
5 sg:pub.10.1007/bf01390750
6 sg:pub.10.1038/22979
7 sg:pub.10.1038/35016020
8 schema:datePublished 2007-12
9 schema:datePublishedReg 2007-12-01
10 schema:description The exciton states in individual quantum dots prepared by the selective interdiffusion method in CdTe/CdMgTe quantum wells are studied by the methods of steady-state optical spectroscopy. The annealing-induced diffusion of Mg atoms inward to the bulk of the quantum well, which is significantly enhanced under the SiO2 mask, leads to a modulation of the bandgap width in the plane of the well, with the minima of the potential being located in the mask aperture areas. A lateral potential that arises, whose height is in the range 30–270 meV and characteristic scale is about 100 nm, efficiently localizes carriers, which form quasi-zero-dimensional excitons in the weak spatial confinement regime. Detailed magnetooptical studies show that Coulomb correlations play a significant role in the formation of exciton states under such a regime, which, in particular, manifests itself in the localization of the wavefunction of carriers on scales that are considerably smaller than the scale of the lateral potential. The particular features of the interlevel splitting, of the biexciton binding energy, and of the diamagnetic shift are discussed. A strong dependence of the interlevel relaxation on the interlevel splitting (the phonon neck) indicates that alternative relaxation mechanisms in the quantum dots studied are weak. The excited states are populated according to the Pauli principle, which indicates that it is possible to apply the shell model of many-exciton states to quantum dots under the weak spatial confinement conditions.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N8bee419624e147ac885d792fe13527c5
15 Nf3762e8d041a40d3895930ad0698c6e8
16 sg:journal.1295107
17 schema:keywords CdMgTe quantum wells
18 CdTe/CdMgTe quantum wells
19 Coulomb correlations
20 Detailed magnetooptical studies
21 MeV
22 Mg atoms
23 Pauli principle
24 SiO2 mask
25 alternative relaxation mechanisms
26 annealing-induced diffusion
27 aperture area
28 area
29 artificial quantum dots
30 atoms
31 bandgap width
32 biexcitons
33 bulk
34 carriers
35 characteristic scale
36 conditions
37 confinement conditions
38 confinement regime
39 correlation
40 dependence
41 diamagnetic shift
42 diffusion
43 dots
44 energy
45 excited states
46 exciton states
47 excitons
48 features
49 formation
50 height
51 individual quantum dots
52 interdiffusion method
53 interlevel relaxation
54 interlevel splitting
55 lateral potential
56 localization
57 magnetooptical studies
58 mask
59 mask aperture areas
60 mechanism
61 method
62 minimum
63 model
64 modulation
65 optical spectroscopy
66 particular features
67 plane
68 potential
69 principles
70 quantum
71 quantum dots
72 quantum wells
73 range 30
74 regime
75 relaxation
76 relaxation mechanism
77 role
78 scale
79 selective interdiffusion method
80 shell model
81 shift
82 significant role
83 spatial confinement conditions
84 spatial confinement regime
85 spectroscopy
86 splitting
87 state
88 steady-state optical spectroscopy
89 strong dependence
90 study
91 wavefunction of carriers
92 wavefunctions
93 weak spatial confinement conditions
94 weak spatial confinement regime
95 wells
96 width
97 zero-dimensional excitons
98 schema:name Excitons in artificial quantum dots in the weak spatial confinement regime
99 schema:pagination 1241-1258
100 schema:productId N4a9ee9e351014f7896d90e626d0ed2b6
101 N6bb6b8c7088f4a95a61f5514846c38b4
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001538350
103 https://doi.org/10.1134/s1063776107120163
104 schema:sdDatePublished 2021-11-01T18:10
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N1748f9c760d54949bef86312780a403f
107 schema:url https://doi.org/10.1134/s1063776107120163
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N1748f9c760d54949bef86312780a403f schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N4a9ee9e351014f7896d90e626d0ed2b6 schema:name dimensions_id
114 schema:value pub.1001538350
115 rdf:type schema:PropertyValue
116 N6bb6b8c7088f4a95a61f5514846c38b4 schema:name doi
117 schema:value 10.1134/s1063776107120163
118 rdf:type schema:PropertyValue
119 N8bee419624e147ac885d792fe13527c5 schema:issueNumber 6
120 rdf:type schema:PublicationIssue
121 N944502c7ad3b4125908ee446f79ee996 rdf:first sg:person.0734455677.90
122 rdf:rest Nacf45dc2505d48dea9b55f9c3301acd4
123 Na8f69b3db45445e1b6150c44803e8d21 rdf:first sg:person.013775777151.52
124 rdf:rest N944502c7ad3b4125908ee446f79ee996
125 Nacf45dc2505d48dea9b55f9c3301acd4 rdf:first sg:person.0771451125.66
126 rdf:rest rdf:nil
127 Nb7fc59d77d924d8caf73d20b16997058 rdf:first sg:person.011610151633.09
128 rdf:rest Na8f69b3db45445e1b6150c44803e8d21
129 Nf3762e8d041a40d3895930ad0698c6e8 schema:volumeNumber 105
130 rdf:type schema:PublicationVolume
131 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
132 schema:name Physical Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
135 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
136 rdf:type schema:DefinedTerm
137 sg:journal.1295107 schema:issn 1063-7761
138 1090-6509
139 schema:name Journal of Experimental and Theoretical Physics
140 schema:publisher Pleiades Publishing
141 rdf:type schema:Periodical
142 sg:person.011610151633.09 schema:affiliation grid-institutes:grid.418975.6
143 schema:familyName Zaitsev
144 schema:givenName S. V.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09
146 rdf:type schema:Person
147 sg:person.013775777151.52 schema:affiliation grid-institutes:grid.8379.5
148 schema:familyName Welsch
149 schema:givenName M. K.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775777151.52
151 rdf:type schema:Person
152 sg:person.0734455677.90 schema:affiliation grid-institutes:grid.8379.5
153 schema:familyName Forchel
154 schema:givenName A.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734455677.90
156 rdf:type schema:Person
157 sg:person.0771451125.66 schema:affiliation grid-institutes:grid.5718.b
158 schema:familyName Bacher
159 schema:givenName G.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771451125.66
161 rdf:type schema:Person
162 sg:pub.10.1007/978-3-642-60650-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002772962
163 https://doi.org/10.1007/978-3-642-60650-2
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/bf01390750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038010229
166 https://doi.org/10.1007/bf01390750
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/22979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019126092
169 https://doi.org/10.1038/22979
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/35016020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023064871
172 https://doi.org/10.1038/35016020
173 rdf:type schema:CreativeWork
174 grid-institutes:grid.418975.6 schema:alternateName Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
175 schema:name Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
176 rdf:type schema:Organization
177 grid-institutes:grid.5718.b schema:alternateName Lehrstuhl für Werkstoffe der Elektrotechnik, Universität Duisburg-Essen, D-47057, Duisburg, Germany
178 schema:name Lehrstuhl für Werkstoffe der Elektrotechnik, Universität Duisburg-Essen, D-47057, Duisburg, Germany
179 rdf:type schema:Organization
180 grid-institutes:grid.8379.5 schema:alternateName Technische Physik, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
181 schema:name Technische Physik, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...