Ablated matter expansion and crater formation under the action of ultrashort laser pulse View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-08

AUTHORS

S. I. Anisimov, V. V. Zhakhovskiĭ, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, V. A. Khokhlov

ABSTRACT

The action of a subpicosecond laser pulse on a target made of an absorbing condensed substance is considered. The propagation of an electron heat conduction wave and the crystal lattice heating prior to the hydrodynamic expansion of the target are analyzed. In these initial interaction stages, a heated layer with a thickness of dT is formed at the target surface. The dependence of dT on the absorbed laser energy density F[J/cm2] is evaluated. The motion of ablated matter in the expansion stage is described using a numerical solution of the equations of gasdynamics and the results of molecular dynamics (MD) simulations. The MD simulations are performed using a large number (∼103) of parallel processors, which allows the number of model atoms to be increased up to a level (about 3.5 × 107) close to that encountered under real experimental conditions. More... »

PAGES

183-197

References to SciGraph publications

  • 1999-01. Electron-lattice kinetics of metals heated by ultrashort laser pulses in JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS
  • 2004-03. Femtosecond time-resolved interferometric microscopy in APPLIED PHYSICS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1063776106080024

    DOI

    http://dx.doi.org/10.1134/s1063776106080024

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008760705


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anisimov", 
            "givenName": "S. I.", 
            "id": "sg:person.015712673737.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015712673737.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Osaka University", 
              "id": "https://www.grid.ac/institutes/grid.136593.b", 
              "name": [
                "Institute for High Energy Densities, Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia", 
                "Institute of Laser Engineering, Osaka University, Osaka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhakhovski\u012d", 
            "givenName": "V. V.", 
            "id": "sg:person.016077213477.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016077213477.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Inogamov", 
            "givenName": "N. A.", 
            "id": "sg:person.013473613553.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013473613553.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Osaka University", 
              "id": "https://www.grid.ac/institutes/grid.136593.b", 
              "name": [
                "Institute of Laser Engineering, Osaka University, Osaka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nishihara", 
            "givenName": "K.", 
            "id": "sg:person.01151677521.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151677521.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Petrov", 
            "givenName": "Yu. V.", 
            "id": "sg:person.012644713255.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012644713255.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khokhlov", 
            "givenName": "V. A.", 
            "id": "sg:person.011630621137.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011630621137.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.tsf.2003.11.124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002998156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.558768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021517997", 
              "https://doi.org/10.1134/1.558768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-4332(97)00736-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023635515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.271674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024287971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-4332(99)00440-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026459922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-4332(02)00463-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038392472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00339-003-2408-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050380901", 
              "https://doi.org/10.1007/s00339-003-2408-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0263034605050391", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053817056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1580996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057722613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.439940", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058017969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.465389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058043397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.60.3279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060593997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.60.3279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060593997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.65.214303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060603318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.65.214303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060603318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.66.115404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060604425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.66.115404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060604425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.68.064114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060607190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.68.064114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060607190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.81.224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060818075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.81.224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060818075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.225502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060827585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.225502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060827585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/josab.13.000459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065168087"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-08", 
        "datePublishedReg": "2006-08-01", 
        "description": "The action of a subpicosecond laser pulse on a target made of an absorbing condensed substance is considered. The propagation of an electron heat conduction wave and the crystal lattice heating prior to the hydrodynamic expansion of the target are analyzed. In these initial interaction stages, a heated layer with a thickness of dT is formed at the target surface. The dependence of dT on the absorbed laser energy density F[J/cm2] is evaluated. The motion of ablated matter in the expansion stage is described using a numerical solution of the equations of gasdynamics and the results of molecular dynamics (MD) simulations. The MD simulations are performed using a large number (\u223c103) of parallel processors, which allows the number of model atoms to be increased up to a level (about 3.5 \u00d7 107) close to that encountered under real experimental conditions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1063776106080024", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295107", 
            "issn": [
              "1063-7761", 
              "1090-6509"
            ], 
            "name": "Journal of Experimental and Theoretical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "103"
          }
        ], 
        "name": "Ablated matter expansion and crater formation under the action of ultrashort laser pulse", 
        "pagination": "183-197", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "29bd3e00f505574520335a360bfead28e49be9fd10cbbd4052d35445ed9f7372"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1063776106080024"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008760705"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1063776106080024", 
          "https://app.dimensions.ai/details/publication/pub.1008760705"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000503.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134%2FS1063776106080024"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063776106080024'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063776106080024'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063776106080024'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063776106080024'


     

    This table displays all metadata directly associated to this object as RDF triples.

    156 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1063776106080024 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N3af8f149a6ad4a39b1015cd6498e3174
    4 schema:citation sg:pub.10.1007/s00339-003-2408-x
    5 sg:pub.10.1134/1.558768
    6 https://doi.org/10.1016/j.tsf.2003.11.124
    7 https://doi.org/10.1016/s0169-4332(02)00463-4
    8 https://doi.org/10.1016/s0169-4332(97)00736-8
    9 https://doi.org/10.1016/s0169-4332(99)00440-7
    10 https://doi.org/10.1017/s0263034605050391
    11 https://doi.org/10.1063/1.1580996
    12 https://doi.org/10.1063/1.439940
    13 https://doi.org/10.1063/1.465389
    14 https://doi.org/10.1103/physrevb.60.3279
    15 https://doi.org/10.1103/physrevb.65.214303
    16 https://doi.org/10.1103/physrevb.66.115404
    17 https://doi.org/10.1103/physrevb.68.064114
    18 https://doi.org/10.1103/physrevlett.81.224
    19 https://doi.org/10.1103/physrevlett.91.225502
    20 https://doi.org/10.1117/12.271674
    21 https://doi.org/10.1364/josab.13.000459
    22 schema:datePublished 2006-08
    23 schema:datePublishedReg 2006-08-01
    24 schema:description The action of a subpicosecond laser pulse on a target made of an absorbing condensed substance is considered. The propagation of an electron heat conduction wave and the crystal lattice heating prior to the hydrodynamic expansion of the target are analyzed. In these initial interaction stages, a heated layer with a thickness of dT is formed at the target surface. The dependence of dT on the absorbed laser energy density F[J/cm2] is evaluated. The motion of ablated matter in the expansion stage is described using a numerical solution of the equations of gasdynamics and the results of molecular dynamics (MD) simulations. The MD simulations are performed using a large number (∼103) of parallel processors, which allows the number of model atoms to be increased up to a level (about 3.5 × 107) close to that encountered under real experimental conditions.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N15dcc91b49f74136a7b60ba96a37df1d
    29 N58784f775fd64d68a92bc50cef897bbc
    30 sg:journal.1295107
    31 schema:name Ablated matter expansion and crater formation under the action of ultrashort laser pulse
    32 schema:pagination 183-197
    33 schema:productId N7d78e2d5438141b7b88fe2e91206a5bf
    34 Na9244093db4d45e4bf808b7b1ddc4df8
    35 Nd5402a8b7e7f4230ad7d1077f1b92202
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008760705
    37 https://doi.org/10.1134/s1063776106080024
    38 schema:sdDatePublished 2019-04-10T22:29
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher Nb6d4ae32521240bd9074159114da9dd4
    41 schema:url http://link.springer.com/10.1134%2FS1063776106080024
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N15dcc91b49f74136a7b60ba96a37df1d schema:volumeNumber 103
    46 rdf:type schema:PublicationVolume
    47 N3af8f149a6ad4a39b1015cd6498e3174 rdf:first sg:person.015712673737.91
    48 rdf:rest Nb328bd27c359477a876354de24c8f9ac
    49 N4d643a55238a4d30a9b4b82035b9f25c rdf:first sg:person.01151677521.36
    50 rdf:rest Nb7bfe1da04f7406c8c179e93a700de0f
    51 N58784f775fd64d68a92bc50cef897bbc schema:issueNumber 2
    52 rdf:type schema:PublicationIssue
    53 N7d78e2d5438141b7b88fe2e91206a5bf schema:name readcube_id
    54 schema:value 29bd3e00f505574520335a360bfead28e49be9fd10cbbd4052d35445ed9f7372
    55 rdf:type schema:PropertyValue
    56 Na9244093db4d45e4bf808b7b1ddc4df8 schema:name dimensions_id
    57 schema:value pub.1008760705
    58 rdf:type schema:PropertyValue
    59 Nb328bd27c359477a876354de24c8f9ac rdf:first sg:person.016077213477.15
    60 rdf:rest Nbaf8a7eac84f4239b829022b12a56f6f
    61 Nb6d4ae32521240bd9074159114da9dd4 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Nb7bfe1da04f7406c8c179e93a700de0f rdf:first sg:person.012644713255.92
    64 rdf:rest Nbfdec7ee1c2940408b3a26342595e543
    65 Nbaf8a7eac84f4239b829022b12a56f6f rdf:first sg:person.013473613553.02
    66 rdf:rest N4d643a55238a4d30a9b4b82035b9f25c
    67 Nbfdec7ee1c2940408b3a26342595e543 rdf:first sg:person.011630621137.82
    68 rdf:rest rdf:nil
    69 Nd5402a8b7e7f4230ad7d1077f1b92202 schema:name doi
    70 schema:value 10.1134/s1063776106080024
    71 rdf:type schema:PropertyValue
    72 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Physical Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    77 rdf:type schema:DefinedTerm
    78 sg:journal.1295107 schema:issn 1063-7761
    79 1090-6509
    80 schema:name Journal of Experimental and Theoretical Physics
    81 rdf:type schema:Periodical
    82 sg:person.01151677521.36 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
    83 schema:familyName Nishihara
    84 schema:givenName K.
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151677521.36
    86 rdf:type schema:Person
    87 sg:person.011630621137.82 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    88 schema:familyName Khokhlov
    89 schema:givenName V. A.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011630621137.82
    91 rdf:type schema:Person
    92 sg:person.012644713255.92 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    93 schema:familyName Petrov
    94 schema:givenName Yu. V.
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012644713255.92
    96 rdf:type schema:Person
    97 sg:person.013473613553.02 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    98 schema:familyName Inogamov
    99 schema:givenName N. A.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013473613553.02
    101 rdf:type schema:Person
    102 sg:person.015712673737.91 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    103 schema:familyName Anisimov
    104 schema:givenName S. I.
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015712673737.91
    106 rdf:type schema:Person
    107 sg:person.016077213477.15 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
    108 schema:familyName Zhakhovskiĭ
    109 schema:givenName V. V.
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016077213477.15
    111 rdf:type schema:Person
    112 sg:pub.10.1007/s00339-003-2408-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050380901
    113 https://doi.org/10.1007/s00339-003-2408-x
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1134/1.558768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021517997
    116 https://doi.org/10.1134/1.558768
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.tsf.2003.11.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002998156
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/s0169-4332(02)00463-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038392472
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/s0169-4332(97)00736-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023635515
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/s0169-4332(99)00440-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026459922
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1017/s0263034605050391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053817056
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1063/1.1580996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057722613
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1063/1.439940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058017969
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1063/1.465389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058043397
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1103/physrevb.60.3279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060593997
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1103/physrevb.65.214303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060603318
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1103/physrevb.66.115404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060604425
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1103/physrevb.68.064114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060607190
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1103/physrevlett.81.224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818075
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1103/physrevlett.91.225502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827585
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1117/12.271674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024287971
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1364/josab.13.000459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065168087
    149 rdf:type schema:CreativeWork
    150 https://www.grid.ac/institutes/grid.136593.b schema:alternateName Osaka University
    151 schema:name Institute for High Energy Densities, Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia
    152 Institute of Laser Engineering, Osaka University, Osaka, Japan
    153 rdf:type schema:Organization
    154 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    155 schema:name Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
    156 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...