Dynamical Substitutes and Energy Surfaces in the Bicircular Sun–Earth–Moon System View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-05

AUTHORS

A. K. Pal, Elbaz I. Abouelmagd

ABSTRACT

The dynamics of a bicircular restricted Sun–Earth–Moon system in which all massive bodies orbit around the center of mass on circular orbits is studied. The equivalent equilibria of Lagrangian points (Dynamical substitutes) are found in a similar fashion as for the derivation of the Lagrangian points of the Earth–Moon system. Generalizations to non–gravitational perturbations due to solar radiation pressure (SRP), solar wind, and Poynting–Robertson drag are also considered through numerical continuation. A locus of points leading to the rates of change of the Hamiltonian and total energy to be zero is identified, and the behavior of the determinant of the pseudo–potential as a function of time is also analyzed in order to draw conclusions on the stability of the system. It is investigated that the equivalent equilibria of collinear Lagrangian points are still collinear in some particular cases. Moreover, the locations of these points are shifted toward the radiating body with increasing the parameter of drag force value. Finally we conclude that the pervasive discussion of the BCM system describes a bridges gap between the Sun–Earth/Moon and the Earth–Moon system. More... »

PAGES

331-344

References to SciGraph publications

  • 2014-09-11. Numerical integration of the restricted three-body problem with Lie series in ASTROPHYSICS AND SPACE SCIENCE
  • 2000-01. On the vertical families of two-dimensional tori near the triangular points of the Bicircular problem in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2016-09-12. Stability of libration points in the restricted four-body problem with variable mass in ASTROPHYSICS AND SPACE SCIENCE
  • 2018-05-15. Parametric stability analysis for planar bicircular restricted four-body problem in ASTRODYNAMICS
  • 2013-01-10. Equilibrium points and zero velocity surfaces in the restricted four-body problem with solar wind drag in ASTROPHYSICS AND SPACE SCIENCE
  • 2003-06. Preliminary Study on the Translunar Halo Orbits of the Real Earth–Moon System in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2015-04-18. Out of plane equilibrium points locations and the forbidden movement regions in the restricted three-body problem with variable mass in ASTROPHYSICS AND SPACE SCIENCE
  • 2016-08-25. The planar restricted three-body problem when both primaries are triaxial rigid bodies: Equilibrium points and periodic orbits in ASTROPHYSICS AND SPACE SCIENCE
  • 2006-12. Study of the gravitational capture in the elliptical restricted three-body problem in THE JOURNAL OF THE ASTRONAUTICAL SCIENCES
  • 2013-12-28. Reduction the secular solution to periodic solution in the generalized restricted three-body problem in ASTROPHYSICS AND SPACE SCIENCE
  • 2013-08-09. On the construction of low-energy cislunar and translunar transfers based on the libration points in ASTROPHYSICS AND SPACE SCIENCE
  • 1995. The Bicircular Model Near the Triangular Libration Points of the RTBP in FROM NEWTON TO CHAOS
  • 2016-12-28. On the R4BP when Third Primary is an Ellipsoid in THE JOURNAL OF THE ASTRONAUTICAL SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1063773721050066

    DOI

    http://dx.doi.org/10.1134/s1063773721050066

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1140298348


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Statistics, School of Basic Science, Manipal University Jaipur, Rajasthan, India", 
              "id": "http://www.grid.ac/institutes/grid.411639.8", 
              "name": [
                "Department of Applied Mathematics,Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, India", 
                "Department of Mathematics and Statistics, School of Basic Science, Manipal University Jaipur, Rajasthan, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pal", 
            "givenName": "A. K.", 
            "id": "sg:person.012650263367.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012650263367.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Celestial Mechanics and Space Dynamics Research Group (CMSDRG), Astronomy Department, National Research Institute of Astronomy and Geophysics (NRIAG), Cairo, Helwan-11421, Egypt", 
              "id": "http://www.grid.ac/institutes/grid.459886.e", 
              "name": [
                "Celestial Mechanics and Space Dynamics Research Group (CMSDRG), Astronomy Department, National Research Institute of Astronomy and Geophysics (NRIAG), Cairo, Helwan-11421, Egypt"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abouelmagd", 
            "givenName": "Elbaz I.", 
            "id": "sg:person.011277122741.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011277122741.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10509-016-2894-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050757240", 
              "https://doi.org/10.1007/s10509-016-2894-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-016-2901-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037027095", 
              "https://doi.org/10.1007/s10509-016-2901-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s42064-017-0017-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103746219", 
              "https://doi.org/10.1007/s42064-017-0017-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-015-2294-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006368925", 
              "https://doi.org/10.1007/s10509-015-2294-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03256506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043588591", 
              "https://doi.org/10.1007/bf03256506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-012-1340-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018165001", 
              "https://doi.org/10.1007/s10509-012-1340-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024178901666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038560357", 
              "https://doi.org/10.1023/a:1024178901666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40295-016-0104-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025736716", 
              "https://doi.org/10.1007/s40295-016-0104-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-013-1563-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022401174", 
              "https://doi.org/10.1007/s10509-013-1563-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-013-1756-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041793036", 
              "https://doi.org/10.1007/s10509-013-1756-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008321605028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021283593", 
              "https://doi.org/10.1023/a:1008321605028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-1085-1_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012443963", 
              "https://doi.org/10.1007/978-1-4899-1085-1_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-014-2107-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012939097", 
              "https://doi.org/10.1007/s10509-014-2107-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-05", 
        "datePublishedReg": "2021-05-01", 
        "description": "The dynamics of a bicircular restricted Sun\u2013Earth\u2013Moon system in which all massive bodies orbit around the center of mass on circular orbits is studied. The equivalent equilibria of Lagrangian points (Dynamical substitutes) are found in a similar fashion as for the derivation of the Lagrangian points of the Earth\u2013Moon system. Generalizations to non\u2013gravitational perturbations due to solar radiation pressure (SRP), solar wind, and Poynting\u2013Robertson drag are also considered through numerical continuation. A locus of points leading to the rates of change of the Hamiltonian and total energy to be zero is identified, and the behavior of the determinant of the pseudo\u2013potential as a function of time is also analyzed in order to draw conclusions on the stability of the system. It is investigated that the equivalent equilibria of collinear Lagrangian points are still collinear in some particular cases. Moreover, the locations of these points are shifted toward the radiating body with increasing the parameter of drag force value. Finally we conclude that the pervasive discussion of the BCM system describes a bridges gap between the Sun\u2013Earth/Moon and the Earth\u2013Moon system.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s1063773721050066", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136271", 
            "issn": [
              "0320-0108", 
              "0360-0327"
            ], 
            "name": "Astronomy Letters", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "47"
          }
        ], 
        "keywords": [
          "solar radiation pressure", 
          "Lagrangian points", 
          "collinear Lagrangian points", 
          "Earth-Moon system", 
          "Sun-Earth", 
          "dynamical substitutes", 
          "equivalent equilibria", 
          "numerical continuation", 
          "locus of points", 
          "Poynting-Robertson drag", 
          "solar wind", 
          "Moon system", 
          "particular case", 
          "radiation pressure", 
          "center of mass", 
          "circular orbit", 
          "non-gravitational perturbations", 
          "massive body", 
          "Sun-Earth/Moon", 
          "pervasive discussion", 
          "total energy", 
          "function of time", 
          "energy surface", 
          "generalization", 
          "point", 
          "derivation", 
          "equilibrium", 
          "orbit", 
          "perturbations", 
          "system", 
          "rate of change", 
          "BCM system", 
          "dynamics", 
          "drag", 
          "parameters", 
          "wind", 
          "continuation", 
          "function", 
          "energy", 
          "stability", 
          "Moon", 
          "order", 
          "force values", 
          "cases", 
          "behavior", 
          "gap", 
          "mass", 
          "similar fashion", 
          "surface", 
          "values", 
          "time", 
          "location", 
          "body", 
          "fashion", 
          "discussion", 
          "bridge gaps", 
          "center", 
          "pressure", 
          "rate", 
          "changes", 
          "conclusion", 
          "substitute", 
          "determinants", 
          "loci"
        ], 
        "name": "Dynamical Substitutes and Energy Surfaces in the Bicircular Sun\u2013Earth\u2013Moon System", 
        "pagination": "331-344", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1140298348"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1063773721050066"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1063773721050066", 
          "https://app.dimensions.ai/details/publication/pub.1140298348"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_898.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s1063773721050066"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063773721050066'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063773721050066'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063773721050066'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063773721050066'


     

    This table displays all metadata directly associated to this object as RDF triples.

    185 TRIPLES      22 PREDICATES      103 URIs      82 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1063773721050066 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N2006321f8e7145ddb51e25b72c6c7b31
    4 schema:citation sg:pub.10.1007/978-1-4899-1085-1_34
    5 sg:pub.10.1007/bf03256506
    6 sg:pub.10.1007/s10509-012-1340-y
    7 sg:pub.10.1007/s10509-013-1563-6
    8 sg:pub.10.1007/s10509-013-1756-z
    9 sg:pub.10.1007/s10509-014-2107-4
    10 sg:pub.10.1007/s10509-015-2294-7
    11 sg:pub.10.1007/s10509-016-2894-x
    12 sg:pub.10.1007/s10509-016-2901-2
    13 sg:pub.10.1007/s40295-016-0104-2
    14 sg:pub.10.1007/s42064-017-0017-2
    15 sg:pub.10.1023/a:1008321605028
    16 sg:pub.10.1023/a:1024178901666
    17 schema:datePublished 2021-05
    18 schema:datePublishedReg 2021-05-01
    19 schema:description The dynamics of a bicircular restricted Sun–Earth–Moon system in which all massive bodies orbit around the center of mass on circular orbits is studied. The equivalent equilibria of Lagrangian points (Dynamical substitutes) are found in a similar fashion as for the derivation of the Lagrangian points of the Earth–Moon system. Generalizations to non–gravitational perturbations due to solar radiation pressure (SRP), solar wind, and Poynting–Robertson drag are also considered through numerical continuation. A locus of points leading to the rates of change of the Hamiltonian and total energy to be zero is identified, and the behavior of the determinant of the pseudo–potential as a function of time is also analyzed in order to draw conclusions on the stability of the system. It is investigated that the equivalent equilibria of collinear Lagrangian points are still collinear in some particular cases. Moreover, the locations of these points are shifted toward the radiating body with increasing the parameter of drag force value. Finally we conclude that the pervasive discussion of the BCM system describes a bridges gap between the Sun–Earth/Moon and the Earth–Moon system.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N967b91197a924f5ba5898e14d597509a
    24 Nbb2fa7199f4149b1aa8bc986eb52e86d
    25 sg:journal.1136271
    26 schema:keywords BCM system
    27 Earth-Moon system
    28 Lagrangian points
    29 Moon
    30 Moon system
    31 Poynting-Robertson drag
    32 Sun-Earth
    33 Sun-Earth/Moon
    34 behavior
    35 body
    36 bridge gaps
    37 cases
    38 center
    39 center of mass
    40 changes
    41 circular orbit
    42 collinear Lagrangian points
    43 conclusion
    44 continuation
    45 derivation
    46 determinants
    47 discussion
    48 drag
    49 dynamical substitutes
    50 dynamics
    51 energy
    52 energy surface
    53 equilibrium
    54 equivalent equilibria
    55 fashion
    56 force values
    57 function
    58 function of time
    59 gap
    60 generalization
    61 location
    62 loci
    63 locus of points
    64 mass
    65 massive body
    66 non-gravitational perturbations
    67 numerical continuation
    68 orbit
    69 order
    70 parameters
    71 particular case
    72 perturbations
    73 pervasive discussion
    74 point
    75 pressure
    76 radiation pressure
    77 rate
    78 rate of change
    79 similar fashion
    80 solar radiation pressure
    81 solar wind
    82 stability
    83 substitute
    84 surface
    85 system
    86 time
    87 total energy
    88 values
    89 wind
    90 schema:name Dynamical Substitutes and Energy Surfaces in the Bicircular Sun–Earth–Moon System
    91 schema:pagination 331-344
    92 schema:productId N56686443d60f42a488bc8682481c4e89
    93 Na784e8c3166e4459bc4b8be921a5f316
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140298348
    95 https://doi.org/10.1134/s1063773721050066
    96 schema:sdDatePublished 2022-05-20T07:39
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher Nbb4aea50590642dda91338268830b339
    99 schema:url https://doi.org/10.1134/s1063773721050066
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N2006321f8e7145ddb51e25b72c6c7b31 rdf:first sg:person.012650263367.16
    104 rdf:rest Nfb2a476112af47d8a801c4f6a3be2cb5
    105 N56686443d60f42a488bc8682481c4e89 schema:name dimensions_id
    106 schema:value pub.1140298348
    107 rdf:type schema:PropertyValue
    108 N967b91197a924f5ba5898e14d597509a schema:issueNumber 5
    109 rdf:type schema:PublicationIssue
    110 Na784e8c3166e4459bc4b8be921a5f316 schema:name doi
    111 schema:value 10.1134/s1063773721050066
    112 rdf:type schema:PropertyValue
    113 Nbb2fa7199f4149b1aa8bc986eb52e86d schema:volumeNumber 47
    114 rdf:type schema:PublicationVolume
    115 Nbb4aea50590642dda91338268830b339 schema:name Springer Nature - SN SciGraph project
    116 rdf:type schema:Organization
    117 Nfb2a476112af47d8a801c4f6a3be2cb5 rdf:first sg:person.011277122741.14
    118 rdf:rest rdf:nil
    119 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Physical Sciences
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Other Physical Sciences
    124 rdf:type schema:DefinedTerm
    125 sg:journal.1136271 schema:issn 0320-0108
    126 0360-0327
    127 schema:name Astronomy Letters
    128 schema:publisher Pleiades Publishing
    129 rdf:type schema:Periodical
    130 sg:person.011277122741.14 schema:affiliation grid-institutes:grid.459886.e
    131 schema:familyName Abouelmagd
    132 schema:givenName Elbaz I.
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011277122741.14
    134 rdf:type schema:Person
    135 sg:person.012650263367.16 schema:affiliation grid-institutes:grid.411639.8
    136 schema:familyName Pal
    137 schema:givenName A. K.
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012650263367.16
    139 rdf:type schema:Person
    140 sg:pub.10.1007/978-1-4899-1085-1_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012443963
    141 https://doi.org/10.1007/978-1-4899-1085-1_34
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/bf03256506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043588591
    144 https://doi.org/10.1007/bf03256506
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s10509-012-1340-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018165001
    147 https://doi.org/10.1007/s10509-012-1340-y
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s10509-013-1563-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022401174
    150 https://doi.org/10.1007/s10509-013-1563-6
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s10509-013-1756-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041793036
    153 https://doi.org/10.1007/s10509-013-1756-z
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s10509-014-2107-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012939097
    156 https://doi.org/10.1007/s10509-014-2107-4
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s10509-015-2294-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006368925
    159 https://doi.org/10.1007/s10509-015-2294-7
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s10509-016-2894-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050757240
    162 https://doi.org/10.1007/s10509-016-2894-x
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s10509-016-2901-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037027095
    165 https://doi.org/10.1007/s10509-016-2901-2
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s40295-016-0104-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025736716
    168 https://doi.org/10.1007/s40295-016-0104-2
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s42064-017-0017-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103746219
    171 https://doi.org/10.1007/s42064-017-0017-2
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1023/a:1008321605028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021283593
    174 https://doi.org/10.1023/a:1008321605028
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1023/a:1024178901666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038560357
    177 https://doi.org/10.1023/a:1024178901666
    178 rdf:type schema:CreativeWork
    179 grid-institutes:grid.411639.8 schema:alternateName Department of Mathematics and Statistics, School of Basic Science, Manipal University Jaipur, Rajasthan, India
    180 schema:name Department of Applied Mathematics,Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, India
    181 Department of Mathematics and Statistics, School of Basic Science, Manipal University Jaipur, Rajasthan, India
    182 rdf:type schema:Organization
    183 grid-institutes:grid.459886.e schema:alternateName Celestial Mechanics and Space Dynamics Research Group (CMSDRG), Astronomy Department, National Research Institute of Astronomy and Geophysics (NRIAG), Cairo, Helwan-11421, Egypt
    184 schema:name Celestial Mechanics and Space Dynamics Research Group (CMSDRG), Astronomy Department, National Research Institute of Astronomy and Geophysics (NRIAG), Cairo, Helwan-11421, Egypt
    185 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...