Dynamical Substitutes and Energy Surfaces in the Bicircular Sun–Earth–Moon System View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-05

AUTHORS

A. K. Pal, Elbaz I. Abouelmagd

ABSTRACT

The dynamics of a bicircular restricted Sun–Earth–Moon system in which all massive bodies orbit around the center of mass on circular orbits is studied. The equivalent equilibria of Lagrangian points (Dynamical substitutes) are found in a similar fashion as for the derivation of the Lagrangian points of the Earth–Moon system. Generalizations to non–gravitational perturbations due to solar radiation pressure (SRP), solar wind, and Poynting–Robertson drag are also considered through numerical continuation. A locus of points leading to the rates of change of the Hamiltonian and total energy to be zero is identified, and the behavior of the determinant of the pseudo–potential as a function of time is also analyzed in order to draw conclusions on the stability of the system. It is investigated that the equivalent equilibria of collinear Lagrangian points are still collinear in some particular cases. Moreover, the locations of these points are shifted toward the radiating body with increasing the parameter of drag force value. Finally we conclude that the pervasive discussion of the BCM system describes a bridges gap between the Sun–Earth/Moon and the Earth–Moon system. More... »

PAGES

331-344

References to SciGraph publications

  • 2014-09-11. Numerical integration of the restricted three-body problem with Lie series in ASTROPHYSICS AND SPACE SCIENCE
  • 2013-01-10. Equilibrium points and zero velocity surfaces in the restricted four-body problem with solar wind drag in ASTROPHYSICS AND SPACE SCIENCE
  • 2016-09-12. Stability of libration points in the restricted four-body problem with variable mass in ASTROPHYSICS AND SPACE SCIENCE
  • 2018-05-15. Parametric stability analysis for planar bicircular restricted four-body problem in ASTRODYNAMICS
  • 2003-06. Preliminary Study on the Translunar Halo Orbits of the Real Earth–Moon System in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2015-04-18. Out of plane equilibrium points locations and the forbidden movement regions in the restricted three-body problem with variable mass in ASTROPHYSICS AND SPACE SCIENCE
  • 2000-01. On the vertical families of two-dimensional tori near the triangular points of the Bicircular problem in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2016-08-25. The planar restricted three-body problem when both primaries are triaxial rigid bodies: Equilibrium points and periodic orbits in ASTROPHYSICS AND SPACE SCIENCE
  • 2006-12. Study of the gravitational capture in the elliptical restricted three-body problem in THE JOURNAL OF THE ASTRONAUTICAL SCIENCES
  • 2013-12-28. Reduction the secular solution to periodic solution in the generalized restricted three-body problem in ASTROPHYSICS AND SPACE SCIENCE
  • 2013-08-09. On the construction of low-energy cislunar and translunar transfers based on the libration points in ASTROPHYSICS AND SPACE SCIENCE
  • 1995. The Bicircular Model Near the Triangular Libration Points of the RTBP in FROM NEWTON TO CHAOS
  • 2016-12-28. On the R4BP when Third Primary is an Ellipsoid in THE JOURNAL OF THE ASTRONAUTICAL SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1063773721050066

    DOI

    http://dx.doi.org/10.1134/s1063773721050066

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1140298348


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Statistics, School of Basic Science, Manipal University Jaipur, Rajasthan, India", 
              "id": "http://www.grid.ac/institutes/grid.411639.8", 
              "name": [
                "Department of Applied Mathematics,Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, India", 
                "Department of Mathematics and Statistics, School of Basic Science, Manipal University Jaipur, Rajasthan, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pal", 
            "givenName": "A. K.", 
            "id": "sg:person.012650263367.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012650263367.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Celestial Mechanics and Space Dynamics Research Group (CMSDRG), Astronomy Department, National Research Institute of Astronomy and Geophysics (NRIAG), Cairo, Helwan-11421, Egypt", 
              "id": "http://www.grid.ac/institutes/grid.459886.e", 
              "name": [
                "Celestial Mechanics and Space Dynamics Research Group (CMSDRG), Astronomy Department, National Research Institute of Astronomy and Geophysics (NRIAG), Cairo, Helwan-11421, Egypt"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abouelmagd", 
            "givenName": "Elbaz I.", 
            "id": "sg:person.011277122741.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011277122741.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10509-016-2901-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037027095", 
              "https://doi.org/10.1007/s10509-016-2901-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-1085-1_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012443963", 
              "https://doi.org/10.1007/978-1-4899-1085-1_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008321605028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021283593", 
              "https://doi.org/10.1023/a:1008321605028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s42064-017-0017-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103746219", 
              "https://doi.org/10.1007/s42064-017-0017-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024178901666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038560357", 
              "https://doi.org/10.1023/a:1024178901666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-016-2894-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050757240", 
              "https://doi.org/10.1007/s10509-016-2894-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-012-1340-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018165001", 
              "https://doi.org/10.1007/s10509-012-1340-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-014-2107-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012939097", 
              "https://doi.org/10.1007/s10509-014-2107-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-015-2294-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006368925", 
              "https://doi.org/10.1007/s10509-015-2294-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-013-1756-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041793036", 
              "https://doi.org/10.1007/s10509-013-1756-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03256506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043588591", 
              "https://doi.org/10.1007/bf03256506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-013-1563-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022401174", 
              "https://doi.org/10.1007/s10509-013-1563-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40295-016-0104-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025736716", 
              "https://doi.org/10.1007/s40295-016-0104-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-05", 
        "datePublishedReg": "2021-05-01", 
        "description": "The dynamics of a bicircular restricted Sun\u2013Earth\u2013Moon system in which all massive bodies orbit around the center of mass on circular orbits is studied. The equivalent equilibria of Lagrangian points (Dynamical substitutes) are found in a similar fashion as for the derivation of the Lagrangian points of the Earth\u2013Moon system. Generalizations to non\u2013gravitational perturbations due to solar radiation pressure (SRP), solar wind, and Poynting\u2013Robertson drag are also considered through numerical continuation. A locus of points leading to the rates of change of the Hamiltonian and total energy to be zero is identified, and the behavior of the determinant of the pseudo\u2013potential as a function of time is also analyzed in order to draw conclusions on the stability of the system. It is investigated that the equivalent equilibria of collinear Lagrangian points are still collinear in some particular cases. Moreover, the locations of these points are shifted toward the radiating body with increasing the parameter of drag force value. Finally we conclude that the pervasive discussion of the BCM system describes a bridges gap between the Sun\u2013Earth/Moon and the Earth\u2013Moon system.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s1063773721050066", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136271", 
            "issn": [
              "0320-0108", 
              "0360-0327"
            ], 
            "name": "Astronomy Letters", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "47"
          }
        ], 
        "keywords": [
          "solar radiation pressure", 
          "Lagrangian points", 
          "collinear Lagrangian points", 
          "Earth-Moon system", 
          "Sun\u2013Earth", 
          "dynamical substitutes", 
          "numerical continuation", 
          "locus of points", 
          "Poynting-Robertson drag", 
          "solar wind", 
          "Moon system", 
          "particular case", 
          "radiation pressure", 
          "circular orbit", 
          "center of mass", 
          "non-gravitational perturbations", 
          "massive body", 
          "equivalent equilibria", 
          "total energy", 
          "function of time", 
          "energy surface", 
          "generalization", 
          "point", 
          "derivation", 
          "equilibrium", 
          "orbit", 
          "system", 
          "perturbations", 
          "BCM system", 
          "rate of change", 
          "dynamics", 
          "drag", 
          "parameters", 
          "wind", 
          "continuation", 
          "function", 
          "energy", 
          "stability", 
          "Moon", 
          "order", 
          "gap", 
          "cases", 
          "behavior", 
          "force values", 
          "mass", 
          "similar fashion", 
          "surface", 
          "values", 
          "time", 
          "location", 
          "body", 
          "fashion", 
          "discussion", 
          "center", 
          "pressure", 
          "bridge gaps", 
          "rate", 
          "conclusion", 
          "changes", 
          "Sun-Earth/Moon", 
          "substitute", 
          "determinants", 
          "loci", 
          "drag force value", 
          "pervasive discussion", 
          "Bicircular Sun\u2013Earth"
        ], 
        "name": "Dynamical Substitutes and Energy Surfaces in the Bicircular Sun\u2013Earth\u2013Moon System", 
        "pagination": "331-344", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1140298348"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1063773721050066"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1063773721050066", 
          "https://app.dimensions.ai/details/publication/pub.1140298348"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_908.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s1063773721050066"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063773721050066'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063773721050066'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063773721050066'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063773721050066'


     

    This table displays all metadata directly associated to this object as RDF triples.

    187 TRIPLES      22 PREDICATES      105 URIs      84 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1063773721050066 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N4d44e287011d4e1f95604f7e539c77a7
    4 schema:citation sg:pub.10.1007/978-1-4899-1085-1_34
    5 sg:pub.10.1007/bf03256506
    6 sg:pub.10.1007/s10509-012-1340-y
    7 sg:pub.10.1007/s10509-013-1563-6
    8 sg:pub.10.1007/s10509-013-1756-z
    9 sg:pub.10.1007/s10509-014-2107-4
    10 sg:pub.10.1007/s10509-015-2294-7
    11 sg:pub.10.1007/s10509-016-2894-x
    12 sg:pub.10.1007/s10509-016-2901-2
    13 sg:pub.10.1007/s40295-016-0104-2
    14 sg:pub.10.1007/s42064-017-0017-2
    15 sg:pub.10.1023/a:1008321605028
    16 sg:pub.10.1023/a:1024178901666
    17 schema:datePublished 2021-05
    18 schema:datePublishedReg 2021-05-01
    19 schema:description The dynamics of a bicircular restricted Sun–Earth–Moon system in which all massive bodies orbit around the center of mass on circular orbits is studied. The equivalent equilibria of Lagrangian points (Dynamical substitutes) are found in a similar fashion as for the derivation of the Lagrangian points of the Earth–Moon system. Generalizations to non–gravitational perturbations due to solar radiation pressure (SRP), solar wind, and Poynting–Robertson drag are also considered through numerical continuation. A locus of points leading to the rates of change of the Hamiltonian and total energy to be zero is identified, and the behavior of the determinant of the pseudo–potential as a function of time is also analyzed in order to draw conclusions on the stability of the system. It is investigated that the equivalent equilibria of collinear Lagrangian points are still collinear in some particular cases. Moreover, the locations of these points are shifted toward the radiating body with increasing the parameter of drag force value. Finally we conclude that the pervasive discussion of the BCM system describes a bridges gap between the Sun–Earth/Moon and the Earth–Moon system.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf Nd378ec54d1d74ddabd1862d55432ca30
    24 Ndc9e8fffd6a64ce2b50d733196f50511
    25 sg:journal.1136271
    26 schema:keywords BCM system
    27 Bicircular Sun–Earth
    28 Earth-Moon system
    29 Lagrangian points
    30 Moon
    31 Moon system
    32 Poynting-Robertson drag
    33 Sun-Earth/Moon
    34 Sun–Earth
    35 behavior
    36 body
    37 bridge gaps
    38 cases
    39 center
    40 center of mass
    41 changes
    42 circular orbit
    43 collinear Lagrangian points
    44 conclusion
    45 continuation
    46 derivation
    47 determinants
    48 discussion
    49 drag
    50 drag force value
    51 dynamical substitutes
    52 dynamics
    53 energy
    54 energy surface
    55 equilibrium
    56 equivalent equilibria
    57 fashion
    58 force values
    59 function
    60 function of time
    61 gap
    62 generalization
    63 location
    64 loci
    65 locus of points
    66 mass
    67 massive body
    68 non-gravitational perturbations
    69 numerical continuation
    70 orbit
    71 order
    72 parameters
    73 particular case
    74 perturbations
    75 pervasive discussion
    76 point
    77 pressure
    78 radiation pressure
    79 rate
    80 rate of change
    81 similar fashion
    82 solar radiation pressure
    83 solar wind
    84 stability
    85 substitute
    86 surface
    87 system
    88 time
    89 total energy
    90 values
    91 wind
    92 schema:name Dynamical Substitutes and Energy Surfaces in the Bicircular Sun–Earth–Moon System
    93 schema:pagination 331-344
    94 schema:productId N76aab3e57f0e42a7aca4861bbfa0fb09
    95 N87fedd94d4434a18bf6844bda8642ad2
    96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140298348
    97 https://doi.org/10.1134/s1063773721050066
    98 schema:sdDatePublished 2022-01-01T18:59
    99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    100 schema:sdPublisher N99d13893860b4f82af94deeff62de26f
    101 schema:url https://doi.org/10.1134/s1063773721050066
    102 sgo:license sg:explorer/license/
    103 sgo:sdDataset articles
    104 rdf:type schema:ScholarlyArticle
    105 N4d44e287011d4e1f95604f7e539c77a7 rdf:first sg:person.012650263367.16
    106 rdf:rest N66dc9fbc865644a9b91a562d3784062d
    107 N66dc9fbc865644a9b91a562d3784062d rdf:first sg:person.011277122741.14
    108 rdf:rest rdf:nil
    109 N76aab3e57f0e42a7aca4861bbfa0fb09 schema:name doi
    110 schema:value 10.1134/s1063773721050066
    111 rdf:type schema:PropertyValue
    112 N87fedd94d4434a18bf6844bda8642ad2 schema:name dimensions_id
    113 schema:value pub.1140298348
    114 rdf:type schema:PropertyValue
    115 N99d13893860b4f82af94deeff62de26f schema:name Springer Nature - SN SciGraph project
    116 rdf:type schema:Organization
    117 Nd378ec54d1d74ddabd1862d55432ca30 schema:volumeNumber 47
    118 rdf:type schema:PublicationVolume
    119 Ndc9e8fffd6a64ce2b50d733196f50511 schema:issueNumber 5
    120 rdf:type schema:PublicationIssue
    121 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Physical Sciences
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Other Physical Sciences
    126 rdf:type schema:DefinedTerm
    127 sg:journal.1136271 schema:issn 0320-0108
    128 0360-0327
    129 schema:name Astronomy Letters
    130 schema:publisher Pleiades Publishing
    131 rdf:type schema:Periodical
    132 sg:person.011277122741.14 schema:affiliation grid-institutes:grid.459886.e
    133 schema:familyName Abouelmagd
    134 schema:givenName Elbaz I.
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011277122741.14
    136 rdf:type schema:Person
    137 sg:person.012650263367.16 schema:affiliation grid-institutes:grid.411639.8
    138 schema:familyName Pal
    139 schema:givenName A. K.
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012650263367.16
    141 rdf:type schema:Person
    142 sg:pub.10.1007/978-1-4899-1085-1_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012443963
    143 https://doi.org/10.1007/978-1-4899-1085-1_34
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf03256506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043588591
    146 https://doi.org/10.1007/bf03256506
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s10509-012-1340-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018165001
    149 https://doi.org/10.1007/s10509-012-1340-y
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s10509-013-1563-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022401174
    152 https://doi.org/10.1007/s10509-013-1563-6
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s10509-013-1756-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041793036
    155 https://doi.org/10.1007/s10509-013-1756-z
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s10509-014-2107-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012939097
    158 https://doi.org/10.1007/s10509-014-2107-4
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s10509-015-2294-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006368925
    161 https://doi.org/10.1007/s10509-015-2294-7
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s10509-016-2894-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050757240
    164 https://doi.org/10.1007/s10509-016-2894-x
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s10509-016-2901-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037027095
    167 https://doi.org/10.1007/s10509-016-2901-2
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s40295-016-0104-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025736716
    170 https://doi.org/10.1007/s40295-016-0104-2
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s42064-017-0017-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103746219
    173 https://doi.org/10.1007/s42064-017-0017-2
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1023/a:1008321605028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021283593
    176 https://doi.org/10.1023/a:1008321605028
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1023/a:1024178901666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038560357
    179 https://doi.org/10.1023/a:1024178901666
    180 rdf:type schema:CreativeWork
    181 grid-institutes:grid.411639.8 schema:alternateName Department of Mathematics and Statistics, School of Basic Science, Manipal University Jaipur, Rajasthan, India
    182 schema:name Department of Applied Mathematics,Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, India
    183 Department of Mathematics and Statistics, School of Basic Science, Manipal University Jaipur, Rajasthan, India
    184 rdf:type schema:Organization
    185 grid-institutes:grid.459886.e schema:alternateName Celestial Mechanics and Space Dynamics Research Group (CMSDRG), Astronomy Department, National Research Institute of Astronomy and Geophysics (NRIAG), Cairo, Helwan-11421, Egypt
    186 schema:name Celestial Mechanics and Space Dynamics Research Group (CMSDRG), Astronomy Department, National Research Institute of Astronomy and Geophysics (NRIAG), Cairo, Helwan-11421, Egypt
    187 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...