Ontology type: schema:ScholarlyArticle
2021-05
AUTHORSN. R. Deminova, V. V. Shimanskii, N. V. Borisov, M. M. Gabdeev
ABSTRACTWe have performed a model analysis of the optical radiation from the young pre-cataclysmic variable Lan 30 and determined the set of its fundamental characteristics. Spectroscopic and multiband photometric observations have been carried out with the BTA and Zeiss-1000 telescopes at the Special Astrophysical Observatory of the Russian Academy of Sciences. The technique for modeling irradiated atmospheres of stars in close binary systems has been used for the computations of synthetic spectra and light curves. We have established the dominance of the radiation from an sdB subdwarf with atmospheric parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\textrm{eff}}=30\,500\pm 1100$$\end{document} K and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log g=5.60\pm 0.10$$\end{document} in the optical band under moderate influence of reflection effects on the light curves and HI line profiles. We have analyzed the measured sets of radial velocities of the primary component by taking into account the possible influence of reflection effects on them and refined their semi-amplitude \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1}=56.3\pm 2.0$$\end{document} km s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{-1}$$\end{document}. We have found that the nearly sinusoidal shape of the light curves of Lan 30 allows only an upper limit on the orbital inclination to be set. Based on agreement between the model and observed light curves, we have estimated the radii of the components at various inclinations. To determine their lower limit, we have used evolutionary estimates of the radii of low-mass main-sequence stars. The mass of the primary component has been taken to be equal to the normal mass of single sdB subdwarfs, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{1}=0.47M_{\odot}$$\end{document}. As a result, we have determined the ranges of possible variations of the orbital inclination \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=33^{\circ}{-}45^{\circ}$$\end{document} and semimajor axis, the radii of the components, and the mass \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2}=0.127{-}0.175M_{\odot}$$\end{document} of the red dwarf. More... »
PAGES307-315
http://scigraph.springernature.com/pub.10.1134/s1063773721050030
DOIhttp://dx.doi.org/10.1134/s1063773721050030
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1140298346
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Astronomical and Space Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Kazan Federal University (Volga Region), ul. Kremlevskaya 18, 420008, Kazan, Russia",
"id": "http://www.grid.ac/institutes/grid.77268.3c",
"name": [
"Kazan Federal University (Volga Region), ul. Kremlevskaya 18, 420008, Kazan, Russia"
],
"type": "Organization"
},
"familyName": "Deminova",
"givenName": "N. R.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Kazan Federal University (Volga Region), ul. Kremlevskaya 18, 420008, Kazan, Russia",
"id": "http://www.grid.ac/institutes/grid.77268.3c",
"name": [
"Special Astrophysical Observatory, Russian Academy of Sciences, 369167, Nizhnii Arkhyz, Karachai-Cherkessian Republic, Russia",
"Kazan Federal University (Volga Region), ul. Kremlevskaya 18, 420008, Kazan, Russia"
],
"type": "Organization"
},
"familyName": "Shimanskii",
"givenName": "V. V.",
"id": "sg:person.011613467212.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011613467212.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Special Astrophysical Observatory, Russian Academy of Sciences, 369167, Nizhnii Arkhyz, Karachai-Cherkessian Republic, Russia",
"id": "http://www.grid.ac/institutes/grid.452760.2",
"name": [
"Special Astrophysical Observatory, Russian Academy of Sciences, 369167, Nizhnii Arkhyz, Karachai-Cherkessian Republic, Russia"
],
"type": "Organization"
},
"familyName": "Borisov",
"givenName": "N. V.",
"id": "sg:person.016622417117.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622417117.67"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Applied Research, Academy of Sciences of Tatarstan, 420111, Kazan, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Kazan Federal University (Volga Region), ul. Kremlevskaya 18, 420008, Kazan, Russia",
"Institute of Applied Research, Academy of Sciences of Tatarstan, 420111, Kazan, Russia"
],
"type": "Organization"
},
"familyName": "Gabdeev",
"givenName": "M. M.",
"id": "sg:person.015643151551.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015643151551.67"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1134/1.1611217",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019887104",
"https://doi.org/10.1134/1.1611217"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/1.1883351",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008385623",
"https://doi.org/10.1134/1.1883351"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/1.1479426",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017897024",
"https://doi.org/10.1134/1.1479426"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s106377291210006x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051861617",
"https://doi.org/10.1134/s106377291210006x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1990341309040051",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027498952",
"https://doi.org/10.1134/s1990341309040051"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1990341314010088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046265740",
"https://doi.org/10.1134/s1990341314010088"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1063772912110066",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019372793",
"https://doi.org/10.1134/s1063772912110066"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/1.1502226",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045666197",
"https://doi.org/10.1134/1.1502226"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-05",
"datePublishedReg": "2021-05-01",
"description": "We have performed a model analysis of the optical radiation from the young pre-cataclysmic variable Lan 30 and determined the set of its fundamental characteristics. Spectroscopic and multiband photometric observations have been carried out with the BTA and Zeiss-1000 telescopes at the Special Astrophysical Observatory of the Russian Academy of Sciences. The technique for modeling irradiated atmospheres of stars in close binary systems has been used for the computations of synthetic spectra and light curves. We have established the dominance of the radiation from an sdB subdwarf with atmospheric parameters \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$T_{\\textrm{eff}}=30\\,500\\pm 1100$$\\end{document} K and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\log g=5.60\\pm 0.10$$\\end{document} in the optical band under moderate influence of reflection effects on the light curves and HI line profiles. We have analyzed the measured sets of radial velocities of the primary component by taking into account the possible influence of reflection effects on them and refined their semi-amplitude \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$K_{1}=56.3\\pm 2.0$$\\end{document} km s\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${}^{-1}$$\\end{document}. We have found that the nearly sinusoidal shape of the light curves of Lan 30 allows only an upper limit on the orbital inclination to be set. Based on agreement between the model and observed light curves, we have estimated the radii of the components at various inclinations. To determine their lower limit, we have used evolutionary estimates of the radii of low-mass main-sequence stars. The mass of the primary component has been taken to be equal to the normal mass of single sdB subdwarfs, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$M_{1}=0.47M_{\\odot}$$\\end{document}. As a result, we have determined the ranges of possible variations of the orbital inclination \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$i=33^{\\circ}{-}45^{\\circ}$$\\end{document} and semimajor axis, the radii of the components, and the mass \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$M_{2}=0.127{-}0.175M_{\\odot}$$\\end{document} of the red dwarf.",
"genre": "article",
"id": "sg:pub.10.1134/s1063773721050030",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136271",
"issn": [
"0320-0108",
"0360-0327"
],
"name": "Astronomy Letters",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "47"
}
],
"keywords": [
"light curves",
"low-mass main-sequence stars",
"orbital inclination",
"Special Astrophysical Observatory",
"main-sequence stars",
"close binary systems",
"reflection effect",
"optical radiation",
"Astrophysical Observatory",
"optical bands",
"optical observations",
"red dwarfs",
"radial velocity",
"irradiated atmospheres",
"line profiles",
"photometric observations",
"synthetic spectra",
"semimajor axis",
"atmospheric parameters",
"stars",
"subdwarfs",
"binary systems",
"upper limit",
"radiation",
"evolutionary estimates",
"radius",
"normal mass",
"sinusoidal shape",
"Russian Academy",
"telescope",
"dwarfs",
"Observatory",
"lower limit",
"mass",
"spectra",
"Zeiss",
"primary component",
"possible variations",
"limit",
"inclination",
"atmosphere",
"band",
"fundamental characteristics",
"agreement",
"curves",
"velocity",
"axis",
"range",
"components",
"shape",
"model analysis",
"parameters",
"technique",
"possible influence",
"effect",
"profile",
"BTA",
"computation",
"account",
"characteristics",
"influence",
"system",
"moderate influence",
"variation",
"model",
"set",
"results",
"estimates",
"science",
"analysis",
"Academy",
"dominance",
"observations"
],
"name": "Determining the Characteristics of Lan 30 from Optical Observations",
"pagination": "307-315",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1140298346"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063773721050030"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063773721050030",
"https://app.dimensions.ai/details/publication/pub.1140298346"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:28",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_906.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063773721050030"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063773721050030'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063773721050030'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063773721050030'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063773721050030'
This table displays all metadata directly associated to this object as RDF triples.
191 TRIPLES
22 PREDICATES
107 URIs
91 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063773721050030 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0201 |
3 | ″ | schema:author | N28e9dbdbb4ba4bbfb53b8a4ede402d76 |
4 | ″ | schema:citation | sg:pub.10.1134/1.1479426 |
5 | ″ | ″ | sg:pub.10.1134/1.1502226 |
6 | ″ | ″ | sg:pub.10.1134/1.1611217 |
7 | ″ | ″ | sg:pub.10.1134/1.1883351 |
8 | ″ | ″ | sg:pub.10.1134/s106377291210006x |
9 | ″ | ″ | sg:pub.10.1134/s1063772912110066 |
10 | ″ | ″ | sg:pub.10.1134/s1990341309040051 |
11 | ″ | ″ | sg:pub.10.1134/s1990341314010088 |
12 | ″ | schema:datePublished | 2021-05 |
13 | ″ | schema:datePublishedReg | 2021-05-01 |
14 | ″ | schema:description | We have performed a model analysis of the optical radiation from the young pre-cataclysmic variable Lan 30 and determined the set of its fundamental characteristics. Spectroscopic and multiband photometric observations have been carried out with the BTA and Zeiss-1000 telescopes at the Special Astrophysical Observatory of the Russian Academy of Sciences. The technique for modeling irradiated atmospheres of stars in close binary systems has been used for the computations of synthetic spectra and light curves. We have established the dominance of the radiation from an sdB subdwarf with atmospheric parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\textrm{eff}}=30\,500\pm 1100$$\end{document} K and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log g=5.60\pm 0.10$$\end{document} in the optical band under moderate influence of reflection effects on the light curves and HI line profiles. We have analyzed the measured sets of radial velocities of the primary component by taking into account the possible influence of reflection effects on them and refined their semi-amplitude \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1}=56.3\pm 2.0$$\end{document} km s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{-1}$$\end{document}. We have found that the nearly sinusoidal shape of the light curves of Lan 30 allows only an upper limit on the orbital inclination to be set. Based on agreement between the model and observed light curves, we have estimated the radii of the components at various inclinations. To determine their lower limit, we have used evolutionary estimates of the radii of low-mass main-sequence stars. The mass of the primary component has been taken to be equal to the normal mass of single sdB subdwarfs, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{1}=0.47M_{\odot}$$\end{document}. As a result, we have determined the ranges of possible variations of the orbital inclination \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=33^{\circ}{-}45^{\circ}$$\end{document} and semimajor axis, the radii of the components, and the mass \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2}=0.127{-}0.175M_{\odot}$$\end{document} of the red dwarf. |
15 | ″ | schema:genre | article |
16 | ″ | schema:inLanguage | en |
17 | ″ | schema:isAccessibleForFree | false |
18 | ″ | schema:isPartOf | N0e8f41cbb73b40d4a4848e9ae69a223c |
19 | ″ | ″ | Nc72ea263127243f0b5745864e2084c37 |
20 | ″ | ″ | sg:journal.1136271 |
21 | ″ | schema:keywords | Academy |
22 | ″ | ″ | Astrophysical Observatory |
23 | ″ | ″ | BTA |
24 | ″ | ″ | Observatory |
25 | ″ | ″ | Russian Academy |
26 | ″ | ″ | Special Astrophysical Observatory |
27 | ″ | ″ | Zeiss |
28 | ″ | ″ | account |
29 | ″ | ″ | agreement |
30 | ″ | ″ | analysis |
31 | ″ | ″ | atmosphere |
32 | ″ | ″ | atmospheric parameters |
33 | ″ | ″ | axis |
34 | ″ | ″ | band |
35 | ″ | ″ | binary systems |
36 | ″ | ″ | characteristics |
37 | ″ | ″ | close binary systems |
38 | ″ | ″ | components |
39 | ″ | ″ | computation |
40 | ″ | ″ | curves |
41 | ″ | ″ | dominance |
42 | ″ | ″ | dwarfs |
43 | ″ | ″ | effect |
44 | ″ | ″ | estimates |
45 | ″ | ″ | evolutionary estimates |
46 | ″ | ″ | fundamental characteristics |
47 | ″ | ″ | inclination |
48 | ″ | ″ | influence |
49 | ″ | ″ | irradiated atmospheres |
50 | ″ | ″ | light curves |
51 | ″ | ″ | limit |
52 | ″ | ″ | line profiles |
53 | ″ | ″ | low-mass main-sequence stars |
54 | ″ | ″ | lower limit |
55 | ″ | ″ | main-sequence stars |
56 | ″ | ″ | mass |
57 | ″ | ″ | model |
58 | ″ | ″ | model analysis |
59 | ″ | ″ | moderate influence |
60 | ″ | ″ | normal mass |
61 | ″ | ″ | observations |
62 | ″ | ″ | optical bands |
63 | ″ | ″ | optical observations |
64 | ″ | ″ | optical radiation |
65 | ″ | ″ | orbital inclination |
66 | ″ | ″ | parameters |
67 | ″ | ″ | photometric observations |
68 | ″ | ″ | possible influence |
69 | ″ | ″ | possible variations |
70 | ″ | ″ | primary component |
71 | ″ | ″ | profile |
72 | ″ | ″ | radial velocity |
73 | ″ | ″ | radiation |
74 | ″ | ″ | radius |
75 | ″ | ″ | range |
76 | ″ | ″ | red dwarfs |
77 | ″ | ″ | reflection effect |
78 | ″ | ″ | results |
79 | ″ | ″ | science |
80 | ″ | ″ | semimajor axis |
81 | ″ | ″ | set |
82 | ″ | ″ | shape |
83 | ″ | ″ | sinusoidal shape |
84 | ″ | ″ | spectra |
85 | ″ | ″ | stars |
86 | ″ | ″ | subdwarfs |
87 | ″ | ″ | synthetic spectra |
88 | ″ | ″ | system |
89 | ″ | ″ | technique |
90 | ″ | ″ | telescope |
91 | ″ | ″ | upper limit |
92 | ″ | ″ | variation |
93 | ″ | ″ | velocity |
94 | ″ | schema:name | Determining the Characteristics of Lan 30 from Optical Observations |
95 | ″ | schema:pagination | 307-315 |
96 | ″ | schema:productId | Nbb7255bd28d4449eb7a414a4e492c8f4 |
97 | ″ | ″ | Nd3ecd7810463432699dc54ef7b8c7622 |
98 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1140298346 |
99 | ″ | ″ | https://doi.org/10.1134/s1063773721050030 |
100 | ″ | schema:sdDatePublished | 2022-05-10T10:28 |
101 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
102 | ″ | schema:sdPublisher | N55042a4a5f1647309fe70d9eeb2a9ad0 |
103 | ″ | schema:url | https://doi.org/10.1134/s1063773721050030 |
104 | ″ | sgo:license | sg:explorer/license/ |
105 | ″ | sgo:sdDataset | articles |
106 | ″ | rdf:type | schema:ScholarlyArticle |
107 | N0e8f41cbb73b40d4a4848e9ae69a223c | schema:issueNumber | 5 |
108 | ″ | rdf:type | schema:PublicationIssue |
109 | N28e9dbdbb4ba4bbfb53b8a4ede402d76 | rdf:first | N61917f143db94d00a481f85201826fe0 |
110 | ″ | rdf:rest | N758a2c2b3a3f47e1bd3c9280f5fbc698 |
111 | N55042a4a5f1647309fe70d9eeb2a9ad0 | schema:name | Springer Nature - SN SciGraph project |
112 | ″ | rdf:type | schema:Organization |
113 | N61917f143db94d00a481f85201826fe0 | schema:affiliation | grid-institutes:grid.77268.3c |
114 | ″ | schema:familyName | Deminova |
115 | ″ | schema:givenName | N. R. |
116 | ″ | rdf:type | schema:Person |
117 | N758a2c2b3a3f47e1bd3c9280f5fbc698 | rdf:first | sg:person.011613467212.50 |
118 | ″ | rdf:rest | N87ea2c10f4f544d7abe859d4b1ecb8f4 |
119 | N87ea2c10f4f544d7abe859d4b1ecb8f4 | rdf:first | sg:person.016622417117.67 |
120 | ″ | rdf:rest | Nb23b5ed40b9e4a36a0c5fd6431eb698a |
121 | Nb23b5ed40b9e4a36a0c5fd6431eb698a | rdf:first | sg:person.015643151551.67 |
122 | ″ | rdf:rest | rdf:nil |
123 | Nbb7255bd28d4449eb7a414a4e492c8f4 | schema:name | doi |
124 | ″ | schema:value | 10.1134/s1063773721050030 |
125 | ″ | rdf:type | schema:PropertyValue |
126 | Nc72ea263127243f0b5745864e2084c37 | schema:volumeNumber | 47 |
127 | ″ | rdf:type | schema:PublicationVolume |
128 | Nd3ecd7810463432699dc54ef7b8c7622 | schema:name | dimensions_id |
129 | ″ | schema:value | pub.1140298346 |
130 | ″ | rdf:type | schema:PropertyValue |
131 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
132 | ″ | schema:name | Physical Sciences |
133 | ″ | rdf:type | schema:DefinedTerm |
134 | anzsrc-for:0201 | schema:inDefinedTermSet | anzsrc-for: |
135 | ″ | schema:name | Astronomical and Space Sciences |
136 | ″ | rdf:type | schema:DefinedTerm |
137 | sg:journal.1136271 | schema:issn | 0320-0108 |
138 | ″ | ″ | 0360-0327 |
139 | ″ | schema:name | Astronomy Letters |
140 | ″ | schema:publisher | Pleiades Publishing |
141 | ″ | rdf:type | schema:Periodical |
142 | sg:person.011613467212.50 | schema:affiliation | grid-institutes:grid.77268.3c |
143 | ″ | schema:familyName | Shimanskii |
144 | ″ | schema:givenName | V. V. |
145 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011613467212.50 |
146 | ″ | rdf:type | schema:Person |
147 | sg:person.015643151551.67 | schema:affiliation | grid-institutes:None |
148 | ″ | schema:familyName | Gabdeev |
149 | ″ | schema:givenName | M. M. |
150 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015643151551.67 |
151 | ″ | rdf:type | schema:Person |
152 | sg:person.016622417117.67 | schema:affiliation | grid-institutes:grid.452760.2 |
153 | ″ | schema:familyName | Borisov |
154 | ″ | schema:givenName | N. V. |
155 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622417117.67 |
156 | ″ | rdf:type | schema:Person |
157 | sg:pub.10.1134/1.1479426 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017897024 |
158 | ″ | ″ | https://doi.org/10.1134/1.1479426 |
159 | ″ | rdf:type | schema:CreativeWork |
160 | sg:pub.10.1134/1.1502226 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045666197 |
161 | ″ | ″ | https://doi.org/10.1134/1.1502226 |
162 | ″ | rdf:type | schema:CreativeWork |
163 | sg:pub.10.1134/1.1611217 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019887104 |
164 | ″ | ″ | https://doi.org/10.1134/1.1611217 |
165 | ″ | rdf:type | schema:CreativeWork |
166 | sg:pub.10.1134/1.1883351 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1008385623 |
167 | ″ | ″ | https://doi.org/10.1134/1.1883351 |
168 | ″ | rdf:type | schema:CreativeWork |
169 | sg:pub.10.1134/s106377291210006x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051861617 |
170 | ″ | ″ | https://doi.org/10.1134/s106377291210006x |
171 | ″ | rdf:type | schema:CreativeWork |
172 | sg:pub.10.1134/s1063772912110066 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019372793 |
173 | ″ | ″ | https://doi.org/10.1134/s1063772912110066 |
174 | ″ | rdf:type | schema:CreativeWork |
175 | sg:pub.10.1134/s1990341309040051 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027498952 |
176 | ″ | ″ | https://doi.org/10.1134/s1990341309040051 |
177 | ″ | rdf:type | schema:CreativeWork |
178 | sg:pub.10.1134/s1990341314010088 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046265740 |
179 | ″ | ″ | https://doi.org/10.1134/s1990341314010088 |
180 | ″ | rdf:type | schema:CreativeWork |
181 | grid-institutes:None | schema:alternateName | Institute of Applied Research, Academy of Sciences of Tatarstan, 420111, Kazan, Russia |
182 | ″ | schema:name | Institute of Applied Research, Academy of Sciences of Tatarstan, 420111, Kazan, Russia |
183 | ″ | ″ | Kazan Federal University (Volga Region), ul. Kremlevskaya 18, 420008, Kazan, Russia |
184 | ″ | rdf:type | schema:Organization |
185 | grid-institutes:grid.452760.2 | schema:alternateName | Special Astrophysical Observatory, Russian Academy of Sciences, 369167, Nizhnii Arkhyz, Karachai-Cherkessian Republic, Russia |
186 | ″ | schema:name | Special Astrophysical Observatory, Russian Academy of Sciences, 369167, Nizhnii Arkhyz, Karachai-Cherkessian Republic, Russia |
187 | ″ | rdf:type | schema:Organization |
188 | grid-institutes:grid.77268.3c | schema:alternateName | Kazan Federal University (Volga Region), ul. Kremlevskaya 18, 420008, Kazan, Russia |
189 | ″ | schema:name | Kazan Federal University (Volga Region), ul. Kremlevskaya 18, 420008, Kazan, Russia |
190 | ″ | ″ | Special Astrophysical Observatory, Russian Academy of Sciences, 369167, Nizhnii Arkhyz, Karachai-Cherkessian Republic, Russia |
191 | ″ | rdf:type | schema:Organization |