Spectrophotometric Monitoring of the Activity of the Symbiotic Star CH Cyg from 2008 to 2018 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-04

AUTHORS

T. N. Tarasova, A. Skopal

ABSTRACT

Based on spectrophotometric observations, we have studied the variable activity of the symbiotic star CH Cyg from 2008 to 2018. The activity of the star was accompanied by a periodic increase of the flux in continuum and spectral lines. In the period of its activity, in both 2015 and 2018, absorption components appeared in the profiles of emission lines. The shape and radial velocity of the absorption components changed within a day. The maximum radial velocity of the absorption components was about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-2000$$\end{document} km s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{-1}$$\end{document}. By modeling the observed spectral energy distribution, we have established that in the active state the luminosity and radius of the warm pseudo-photosphere of the symbiotic star increased by dozens of times, reaching \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\textrm{WD}}=88.14L_{\odot}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\textrm{WD}}=6.77R_{\odot}$$\end{document}, respectively, at maximum in 2018, and the source of activity of the symbiotic star is accretion onto a white dwarf from a red giant of spectral type M8III. The accretion rate at the maximum luminosity of the pseudo-photosphere has been estimated to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{M}_{\textrm{acc}}\sim 4.7\times 10^{-8}M_{\odot}$$\end{document} yr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{-1}$$\end{document}. We have found a correlation between the TiO 6144 and 7125 molecular bands and the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} brightness of the star, which suggests that a period of 750 days may be the pulsation period of the cool component, and, hence, we have concluded that the pulsations of the cool component at periastron or at a phase close to the periastron can provide an additional inflow of matter accreting onto the white dwarf. Thus, we have concluded that a variable mass accretion rate onto the white dwarf is responsible for the photometric variability of the symbiotic star. We show that 2015 and 2018 were the most active years for this star. More... »

PAGES

235-251

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063773721040071

DOI

http://dx.doi.org/10.1134/s1063773721040071

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1139873560


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Crimean Astrophysical Observatory, Russian Academy of Sciences, 298409, Nauchny, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Crimean Astrophysical Observatory, Russian Academy of Sciences, 298409, Nauchny, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarasova", 
        "givenName": "T. N.", 
        "id": "sg:person.015453265357.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015453265357.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Astronomical Institute, Slovak Academy of Sciences, 05960, Tatransk\u00e1 Lomnica, Slovakia", 
          "id": "http://www.grid.ac/institutes/grid.493212.f", 
          "name": [
            "Astronomical Institute, Slovak Academy of Sciences, 05960, Tatransk\u00e1 Lomnica, Slovakia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skopal", 
        "givenName": "A.", 
        "id": "sg:person.01063104715.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063104715.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/319038a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045139890", 
          "https://doi.org/10.1038/319038a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-04", 
    "datePublishedReg": "2021-04-01", 
    "description": "Based on spectrophotometric observations, we have studied the variable activity of the symbiotic star CH Cyg from 2008 to 2018. The activity of the star was accompanied by a periodic increase of the flux in continuum and spectral lines. In the period of its activity, in both 2015 and 2018, absorption components appeared in the profiles of emission lines. The shape and radial velocity of the absorption components changed within a day. The maximum radial velocity of the absorption components was about \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$-2000$$\\end{document} km s\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${}^{-1}$$\\end{document}. By modeling the observed spectral energy distribution, we have established that in the active state the luminosity and radius of the warm pseudo-photosphere of the symbiotic star increased by dozens of times, reaching \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$L_{\\textrm{WD}}=88.14L_{\\odot}$$\\end{document} and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$R_{\\textrm{WD}}=6.77R_{\\odot}$$\\end{document}, respectively, at maximum in 2018, and the source of activity of the symbiotic star is accretion onto a white dwarf from a red giant of spectral type M8III. The accretion rate at the maximum luminosity of the pseudo-photosphere has been estimated to be \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\dot{M}_{\\textrm{acc}}\\sim 4.7\\times 10^{-8}M_{\\odot}$$\\end{document} yr\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${}^{-1}$$\\end{document}. We have found a correlation between the TiO 6144 and 7125 molecular bands and the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$R$$\\end{document} brightness of the star, which suggests that a period of 750 days may be the pulsation period of the cool component, and, hence, we have concluded that the pulsations of the cool component at periastron or at a phase close to the periastron can provide an additional inflow of matter accreting onto the white dwarf. Thus, we have concluded that a variable mass accretion rate onto the white dwarf is responsible for the photometric variability of the symbiotic star. We show that 2015 and 2018 were the most active years for this star.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063773721040071", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136271", 
        "issn": [
          "0320-0108", 
          "0360-0327"
        ], 
        "name": "Astronomy Letters", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "keywords": [
      "symbiotic star CH Cyg", 
      "symbiotic stars", 
      "white dwarfs", 
      "absorption components", 
      "cool component", 
      "radial velocity", 
      "CH Cyg", 
      "accretion rate", 
      "observed spectral energy distributions", 
      "spectral energy distribution", 
      "mass accretion rate", 
      "maximum radial velocity", 
      "red giants", 
      "emission lines", 
      "maximum luminosity", 
      "photometric variability", 
      "spectral lines", 
      "energy distribution", 
      "stars", 
      "molecular bands", 
      "pulsation period", 
      "spectrophotometric observations", 
      "dwarfs", 
      "luminosity", 
      "periastron", 
      "Cyg", 
      "dozens of times", 
      "brightness", 
      "accretion", 
      "giants", 
      "pulsations", 
      "velocity", 
      "source of activity", 
      "additional inflow", 
      "spectrophotometric monitoring", 
      "radius", 
      "band", 
      "continuum", 
      "flux", 
      "state", 
      "matter", 
      "maximum", 
      "lines", 
      "phase", 
      "components", 
      "source", 
      "shape", 
      "distribution", 
      "active state", 
      "profile", 
      "dozens", 
      "correlation", 
      "periodic increases", 
      "time", 
      "rate", 
      "increase", 
      "active years", 
      "inflow", 
      "monitoring", 
      "period", 
      "variability", 
      "activity", 
      "variable activity", 
      "years", 
      "days", 
      "observations", 
      "star CH Cyg", 
      "spectral type M8III", 
      "type M8III", 
      "M8III", 
      "TiO 6144", 
      "variable mass accretion rate"
    ], 
    "name": "Spectrophotometric Monitoring of the Activity of the Symbiotic Star CH Cyg from 2008 to 2018", 
    "pagination": "235-251", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1139873560"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063773721040071"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063773721040071", 
      "https://app.dimensions.ai/details/publication/pub.1139873560"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_907.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063773721040071"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063773721040071'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063773721040071'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063773721040071'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063773721040071'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      22 PREDICATES      99 URIs      90 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063773721040071 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N4c7f3fe120854e45b9e58313df395fd9
4 schema:citation sg:pub.10.1038/319038a0
5 schema:datePublished 2021-04
6 schema:datePublishedReg 2021-04-01
7 schema:description Based on spectrophotometric observations, we have studied the variable activity of the symbiotic star CH Cyg from 2008 to 2018. The activity of the star was accompanied by a periodic increase of the flux in continuum and spectral lines. In the period of its activity, in both 2015 and 2018, absorption components appeared in the profiles of emission lines. The shape and radial velocity of the absorption components changed within a day. The maximum radial velocity of the absorption components was about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-2000$$\end{document} km s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{-1}$$\end{document}. By modeling the observed spectral energy distribution, we have established that in the active state the luminosity and radius of the warm pseudo-photosphere of the symbiotic star increased by dozens of times, reaching \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\textrm{WD}}=88.14L_{\odot}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\textrm{WD}}=6.77R_{\odot}$$\end{document}, respectively, at maximum in 2018, and the source of activity of the symbiotic star is accretion onto a white dwarf from a red giant of spectral type M8III. The accretion rate at the maximum luminosity of the pseudo-photosphere has been estimated to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{M}_{\textrm{acc}}\sim 4.7\times 10^{-8}M_{\odot}$$\end{document} yr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{-1}$$\end{document}. We have found a correlation between the TiO 6144 and 7125 molecular bands and the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} brightness of the star, which suggests that a period of 750 days may be the pulsation period of the cool component, and, hence, we have concluded that the pulsations of the cool component at periastron or at a phase close to the periastron can provide an additional inflow of matter accreting onto the white dwarf. Thus, we have concluded that a variable mass accretion rate onto the white dwarf is responsible for the photometric variability of the symbiotic star. We show that 2015 and 2018 were the most active years for this star.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nb36720fccae44240ab61ae0bc26c9174
12 Nb73d62563c504da8847cd80078488ff2
13 sg:journal.1136271
14 schema:keywords CH Cyg
15 Cyg
16 M8III
17 TiO 6144
18 absorption components
19 accretion
20 accretion rate
21 active state
22 active years
23 activity
24 additional inflow
25 band
26 brightness
27 components
28 continuum
29 cool component
30 correlation
31 days
32 distribution
33 dozens
34 dozens of times
35 dwarfs
36 emission lines
37 energy distribution
38 flux
39 giants
40 increase
41 inflow
42 lines
43 luminosity
44 mass accretion rate
45 matter
46 maximum
47 maximum luminosity
48 maximum radial velocity
49 molecular bands
50 monitoring
51 observations
52 observed spectral energy distributions
53 periastron
54 period
55 periodic increases
56 phase
57 photometric variability
58 profile
59 pulsation period
60 pulsations
61 radial velocity
62 radius
63 rate
64 red giants
65 shape
66 source
67 source of activity
68 spectral energy distribution
69 spectral lines
70 spectral type M8III
71 spectrophotometric monitoring
72 spectrophotometric observations
73 star CH Cyg
74 stars
75 state
76 symbiotic star CH Cyg
77 symbiotic stars
78 time
79 type M8III
80 variability
81 variable activity
82 variable mass accretion rate
83 velocity
84 white dwarfs
85 years
86 schema:name Spectrophotometric Monitoring of the Activity of the Symbiotic Star CH Cyg from 2008 to 2018
87 schema:pagination 235-251
88 schema:productId Nc415d8e8d052432f9bd5ecb43486ebb5
89 Ncf15d397a32f4530bc2af2b219b06ede
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139873560
91 https://doi.org/10.1134/s1063773721040071
92 schema:sdDatePublished 2022-01-01T19:01
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher Nabff5c5594f543c8a9e843d811af6f35
95 schema:url https://doi.org/10.1134/s1063773721040071
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N4c7f3fe120854e45b9e58313df395fd9 rdf:first sg:person.015453265357.14
100 rdf:rest Nf81fa8a3a9fb4e8094323de741656778
101 Nabff5c5594f543c8a9e843d811af6f35 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nb36720fccae44240ab61ae0bc26c9174 schema:issueNumber 4
104 rdf:type schema:PublicationIssue
105 Nb73d62563c504da8847cd80078488ff2 schema:volumeNumber 47
106 rdf:type schema:PublicationVolume
107 Nc415d8e8d052432f9bd5ecb43486ebb5 schema:name dimensions_id
108 schema:value pub.1139873560
109 rdf:type schema:PropertyValue
110 Ncf15d397a32f4530bc2af2b219b06ede schema:name doi
111 schema:value 10.1134/s1063773721040071
112 rdf:type schema:PropertyValue
113 Nf81fa8a3a9fb4e8094323de741656778 rdf:first sg:person.01063104715.44
114 rdf:rest rdf:nil
115 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
116 schema:name Physical Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
119 schema:name Astronomical and Space Sciences
120 rdf:type schema:DefinedTerm
121 sg:journal.1136271 schema:issn 0320-0108
122 0360-0327
123 schema:name Astronomy Letters
124 schema:publisher Pleiades Publishing
125 rdf:type schema:Periodical
126 sg:person.01063104715.44 schema:affiliation grid-institutes:grid.493212.f
127 schema:familyName Skopal
128 schema:givenName A.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063104715.44
130 rdf:type schema:Person
131 sg:person.015453265357.14 schema:affiliation grid-institutes:grid.4886.2
132 schema:familyName Tarasova
133 schema:givenName T. N.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015453265357.14
135 rdf:type schema:Person
136 sg:pub.10.1038/319038a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045139890
137 https://doi.org/10.1038/319038a0
138 rdf:type schema:CreativeWork
139 grid-institutes:grid.4886.2 schema:alternateName Crimean Astrophysical Observatory, Russian Academy of Sciences, 298409, Nauchny, Russia
140 schema:name Crimean Astrophysical Observatory, Russian Academy of Sciences, 298409, Nauchny, Russia
141 rdf:type schema:Organization
142 grid-institutes:grid.493212.f schema:alternateName Astronomical Institute, Slovak Academy of Sciences, 05960, Tatranská Lomnica, Slovakia
143 schema:name Astronomical Institute, Slovak Academy of Sciences, 05960, Tatranská Lomnica, Slovakia
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...