On the Evolution of Orbits in a Photo-Gravitational Circular Three-Body Problem: The Inner Problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-05

AUTHORS

A. V. Dobroslavskiy, P. S. Krasilnikov

ABSTRACT

We consider the spatial restricted circular three-body problem in the nonresonant case. The massless body (satellite) is assumed to have a large sail area and, therefore, the light pressure is taken into account. We study the evolution of the satellite orbit based on Gauss’s scheme: the averaged equations of motion are investigated in Keplerian phase space, when a Keplerian ellipse with its focus in the main body (Sun) is taken as an unperturbed orbit located inside a sphere whose radius is equal to the orbital radius of the outer planet (inner problem). An investigation of the averaged model in the classical case, where the light pressure is neglected, is known to run into considerable difficulties both in calculating the averaged force function and in analyzing the evolving orbits. We have shown for the first time that the twice-averaged force function admits of an explicit analytical representation via hypergeometric (generalized hypergeometric) functions expandable into convergent power series based on the application of Parseval’s formula. We have also shown that the averaged equations of motion including the additional influence of light pressure are Liouville-integrated (we have three independent first integrals in involution). We have investigated, at fixed values of the Lidov–Kozai integral, the stationary regimes of oscillations in the case of low values of the satellite’s unperturbed semimajor axis (Hill’s case), their bifurcation as a function of the light pressure coefficient \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}. In the plane of Keplerian elements \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document} we have constructed the phase portraits of the oscillations at various values of the light pressure coefficient. The portrait rearrangement due to both equilibrium position bifurcations and separatrix splitting is described. The separatrix splitting is shown to reverse the direction of evolution of the argument of pericenter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document} in the case of rotational motions. More... »

PAGES

345-356

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063773721040058

DOI

http://dx.doi.org/10.1134/s1063773721040058

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140298344


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, 119334, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.17758.3c", 
          "name": [
            "Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, 119334, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dobroslavskiy", 
        "givenName": "A. V.", 
        "id": "sg:person.014577041545.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014577041545.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, 119334, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.17758.3c", 
          "name": [
            "Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, 119334, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krasilnikov", 
        "givenName": "P. S.", 
        "id": "sg:person.012077176463.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077176463.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063773718090025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107929298", 
          "https://doi.org/10.1134/s1063773718090025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00692293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035505982", 
          "https://doi.org/10.1007/bf00692293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s0025654420070092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1135163527", 
          "https://doi.org/10.3103/s0025654420070092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-017-9795-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100103396", 
          "https://doi.org/10.1007/s10569-017-9795-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41550-018-0580-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106971182", 
          "https://doi.org/10.1038/s41550-018-0580-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0010952520060027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1132619929", 
          "https://doi.org/10.1134/s0010952520060027"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-05", 
    "datePublishedReg": "2021-05-01", 
    "description": "We consider the spatial restricted circular three-body problem in the nonresonant case. The massless body (satellite) is assumed to have a large sail area and, therefore, the light pressure is taken into account. We study the evolution of the satellite orbit based on Gauss\u2019s scheme: the averaged equations of motion are investigated in Keplerian phase space, when a Keplerian ellipse with its focus in the main body (Sun) is taken as an unperturbed orbit located inside a sphere whose radius is equal to the orbital radius of the outer planet (inner problem). An investigation of the averaged model in the classical case, where the light pressure is neglected, is known to run into considerable difficulties both in calculating the averaged force function and in analyzing the evolving orbits. We have shown for the first time that the twice-averaged force function admits of an explicit analytical representation via hypergeometric (generalized hypergeometric) functions expandable into convergent power series based on the application of Parseval\u2019s formula. We have also shown that the averaged equations of motion including the additional influence of light pressure are Liouville-integrated (we have three independent first integrals in involution). We have investigated, at fixed values of the Lidov\u2013Kozai integral, the stationary regimes of oscillations in the case of low values of the satellite\u2019s unperturbed semimajor axis (Hill\u2019s case), their bifurcation as a function of the light pressure coefficient \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\delta$$\\end{document}. In the plane of Keplerian elements \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$e$$\\end{document} and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\omega$$\\end{document} we have constructed the phase portraits of the oscillations at various values of the light pressure coefficient. The portrait rearrangement due to both equilibrium position bifurcations and separatrix splitting is described. The separatrix splitting is shown to reverse the direction of evolution of the argument of pericenter \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\omega$$\\end{document} in the case of rotational motions.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063773721040058", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136271", 
        "issn": [
          "0320-0108", 
          "0360-0327"
        ], 
        "name": "Astronomy Letters", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "keywords": [
      "equations of motion", 
      "separatrix splitting", 
      "convergent power series", 
      "evolution of orbits", 
      "explicit analytical representation", 
      "three-body problem", 
      "phase space", 
      "unperturbed orbit", 
      "argument of pericenter", 
      "phase portraits", 
      "Gauss scheme", 
      "nonresonant case", 
      "inner problem", 
      "power series", 
      "hypergeometric functions", 
      "stationary regime", 
      "classical case", 
      "massless body", 
      "force function", 
      "body problem", 
      "analytical representation", 
      "Keplerian ellipse", 
      "Keplerian elements", 
      "light pressure", 
      "Parseval formula", 
      "semimajor axis", 
      "sail area", 
      "rotational motion", 
      "equations", 
      "orbit", 
      "outer planets", 
      "motion", 
      "bifurcation", 
      "orbital radius", 
      "satellite orbits", 
      "Liouville", 
      "problem", 
      "oscillations", 
      "scheme", 
      "formula", 
      "pressure coefficient", 
      "integrals", 
      "pericenter", 
      "radius", 
      "splitting", 
      "coefficient", 
      "admits", 
      "function", 
      "space", 
      "ellipse", 
      "evolution", 
      "representation", 
      "main body", 
      "considerable difficulties", 
      "plane", 
      "cases", 
      "regime", 
      "model", 
      "direction of evolution", 
      "planets", 
      "sphere", 
      "portrait", 
      "account", 
      "values", 
      "first time", 
      "applications", 
      "axis", 
      "satellite", 
      "direction", 
      "argument", 
      "lower values", 
      "three", 
      "additional influence", 
      "elements", 
      "difficulties", 
      "pressure", 
      "time", 
      "series", 
      "body", 
      "investigation", 
      "influence", 
      "focus", 
      "area", 
      "rearrangement", 
      "large sail area", 
      "Keplerian phase space", 
      "force function admits", 
      "function admits", 
      "Lidov\u2013Kozai integral", 
      "light pressure coefficient", 
      "portrait rearrangement", 
      "equilibrium position bifurcations", 
      "position bifurcations", 
      "Photo-Gravitational Circular Three", 
      "Circular Three"
    ], 
    "name": "On the Evolution of Orbits in a Photo-Gravitational Circular Three-Body Problem: The Inner Problem", 
    "pagination": "345-356", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1140298344"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063773721040058"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063773721040058", 
      "https://app.dimensions.ai/details/publication/pub.1140298344"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_899.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063773721040058"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063773721040058'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063773721040058'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063773721040058'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063773721040058'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      22 PREDICATES      127 URIs      113 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063773721040058 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N83b0933c866e47748e43c84539a333d5
4 schema:citation sg:pub.10.1007/bf00692293
5 sg:pub.10.1007/s10569-017-9795-3
6 sg:pub.10.1038/s41550-018-0580-3
7 sg:pub.10.1134/s0010952520060027
8 sg:pub.10.1134/s1063773718090025
9 sg:pub.10.3103/s0025654420070092
10 schema:datePublished 2021-05
11 schema:datePublishedReg 2021-05-01
12 schema:description We consider the spatial restricted circular three-body problem in the nonresonant case. The massless body (satellite) is assumed to have a large sail area and, therefore, the light pressure is taken into account. We study the evolution of the satellite orbit based on Gauss’s scheme: the averaged equations of motion are investigated in Keplerian phase space, when a Keplerian ellipse with its focus in the main body (Sun) is taken as an unperturbed orbit located inside a sphere whose radius is equal to the orbital radius of the outer planet (inner problem). An investigation of the averaged model in the classical case, where the light pressure is neglected, is known to run into considerable difficulties both in calculating the averaged force function and in analyzing the evolving orbits. We have shown for the first time that the twice-averaged force function admits of an explicit analytical representation via hypergeometric (generalized hypergeometric) functions expandable into convergent power series based on the application of Parseval’s formula. We have also shown that the averaged equations of motion including the additional influence of light pressure are Liouville-integrated (we have three independent first integrals in involution). We have investigated, at fixed values of the Lidov–Kozai integral, the stationary regimes of oscillations in the case of low values of the satellite’s unperturbed semimajor axis (Hill’s case), their bifurcation as a function of the light pressure coefficient \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}. In the plane of Keplerian elements \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document} we have constructed the phase portraits of the oscillations at various values of the light pressure coefficient. The portrait rearrangement due to both equilibrium position bifurcations and separatrix splitting is described. The separatrix splitting is shown to reverse the direction of evolution of the argument of pericenter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document} in the case of rotational motions.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N3d225f2d64574514bca4692092625ead
17 N7f318a96ba0a4e4897e9fc33676e5ca0
18 sg:journal.1136271
19 schema:keywords Circular Three
20 Gauss scheme
21 Keplerian elements
22 Keplerian ellipse
23 Keplerian phase space
24 Lidov–Kozai integral
25 Liouville
26 Parseval formula
27 Photo-Gravitational Circular Three
28 account
29 additional influence
30 admits
31 analytical representation
32 applications
33 area
34 argument
35 argument of pericenter
36 axis
37 bifurcation
38 body
39 body problem
40 cases
41 classical case
42 coefficient
43 considerable difficulties
44 convergent power series
45 difficulties
46 direction
47 direction of evolution
48 elements
49 ellipse
50 equations
51 equations of motion
52 equilibrium position bifurcations
53 evolution
54 evolution of orbits
55 explicit analytical representation
56 first time
57 focus
58 force function
59 force function admits
60 formula
61 function
62 function admits
63 hypergeometric functions
64 influence
65 inner problem
66 integrals
67 investigation
68 large sail area
69 light pressure
70 light pressure coefficient
71 lower values
72 main body
73 massless body
74 model
75 motion
76 nonresonant case
77 orbit
78 orbital radius
79 oscillations
80 outer planets
81 pericenter
82 phase portraits
83 phase space
84 plane
85 planets
86 portrait
87 portrait rearrangement
88 position bifurcations
89 power series
90 pressure
91 pressure coefficient
92 problem
93 radius
94 rearrangement
95 regime
96 representation
97 rotational motion
98 sail area
99 satellite
100 satellite orbits
101 scheme
102 semimajor axis
103 separatrix splitting
104 series
105 space
106 sphere
107 splitting
108 stationary regime
109 three
110 three-body problem
111 time
112 unperturbed orbit
113 values
114 schema:name On the Evolution of Orbits in a Photo-Gravitational Circular Three-Body Problem: The Inner Problem
115 schema:pagination 345-356
116 schema:productId N14e4924ecc234da8b711f7b0c32aac15
117 N53e650c21bf448df83cab80578deb993
118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140298344
119 https://doi.org/10.1134/s1063773721040058
120 schema:sdDatePublished 2022-01-01T19:02
121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
122 schema:sdPublisher N77d4cc4c6ade4b0e91e12e109d460130
123 schema:url https://doi.org/10.1134/s1063773721040058
124 sgo:license sg:explorer/license/
125 sgo:sdDataset articles
126 rdf:type schema:ScholarlyArticle
127 N14e4924ecc234da8b711f7b0c32aac15 schema:name dimensions_id
128 schema:value pub.1140298344
129 rdf:type schema:PropertyValue
130 N1a1a800cadd84a2e93ff5433dec10577 rdf:first sg:person.012077176463.48
131 rdf:rest rdf:nil
132 N3d225f2d64574514bca4692092625ead schema:volumeNumber 47
133 rdf:type schema:PublicationVolume
134 N53e650c21bf448df83cab80578deb993 schema:name doi
135 schema:value 10.1134/s1063773721040058
136 rdf:type schema:PropertyValue
137 N77d4cc4c6ade4b0e91e12e109d460130 schema:name Springer Nature - SN SciGraph project
138 rdf:type schema:Organization
139 N7f318a96ba0a4e4897e9fc33676e5ca0 schema:issueNumber 5
140 rdf:type schema:PublicationIssue
141 N83b0933c866e47748e43c84539a333d5 rdf:first sg:person.014577041545.52
142 rdf:rest N1a1a800cadd84a2e93ff5433dec10577
143 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
144 schema:name Physical Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
147 schema:name Other Physical Sciences
148 rdf:type schema:DefinedTerm
149 sg:journal.1136271 schema:issn 0320-0108
150 0360-0327
151 schema:name Astronomy Letters
152 schema:publisher Pleiades Publishing
153 rdf:type schema:Periodical
154 sg:person.012077176463.48 schema:affiliation grid-institutes:grid.17758.3c
155 schema:familyName Krasilnikov
156 schema:givenName P. S.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077176463.48
158 rdf:type schema:Person
159 sg:person.014577041545.52 schema:affiliation grid-institutes:grid.17758.3c
160 schema:familyName Dobroslavskiy
161 schema:givenName A. V.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014577041545.52
163 rdf:type schema:Person
164 sg:pub.10.1007/bf00692293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035505982
165 https://doi.org/10.1007/bf00692293
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s10569-017-9795-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100103396
168 https://doi.org/10.1007/s10569-017-9795-3
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/s41550-018-0580-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106971182
171 https://doi.org/10.1038/s41550-018-0580-3
172 rdf:type schema:CreativeWork
173 sg:pub.10.1134/s0010952520060027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132619929
174 https://doi.org/10.1134/s0010952520060027
175 rdf:type schema:CreativeWork
176 sg:pub.10.1134/s1063773718090025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107929298
177 https://doi.org/10.1134/s1063773718090025
178 rdf:type schema:CreativeWork
179 sg:pub.10.3103/s0025654420070092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135163527
180 https://doi.org/10.3103/s0025654420070092
181 rdf:type schema:CreativeWork
182 grid-institutes:grid.17758.3c schema:alternateName Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, 119334, Moscow, Russia
183 schema:name Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, 119334, Moscow, Russia
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...