Three-Dimensional Version of Hill’s Problem with Variable Mass View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-04

AUTHORS

Ferdous Bouaziz-Kellil

ABSTRACT

The purpose of the present paper is to investigate the motion’s properties of an infinitesimal body in three-dimensional version of Hill’s problem where the mass of the infinitesimal body is supposed to vary with time. As commonly done, the infinitesimal body is assumed to move under the influence of the other massive and oblate bodies that also have radiation effects. We suppose that the whole system is subject to a perturbation on Coriolis and on centrifugal forces. By using the various transformations, we extract the equations of motion and Jacobi quasi-integral. The properties like the locations of equilibrium points, regions of motion, surfaces with projection, trajectories allocation and the basins of attraction are investigated for various values of mass parameters. The stability is examined by using Meshcherskii space-time inverse transformations. More... »

PAGES

262-276

References to SciGraph publications

  • 2009-05-10. On the restricted circular conservative three-body problem with variable masses in ASTRONOMY LETTERS
  • 2005-10. THE HILL PROBLEM WITH OBLATE SECONDARY: NUMERICAL EXPLORATION in EARTH, MOON, AND PLANETS
  • 2000-05. A Photogravitational Hill Problem and Radiation Effects on Hill Stability of Orbits in ASTROPHYSICS AND SPACE SCIENCE
  • 2017-09-12. Comparing the fractal basins of attraction in the Hill problem with oblateness and radiation in ASTROPHYSICS AND SPACE SCIENCE
  • 2001-11. A Hill Problem with Oblate Primaries and Effect of Oblateness on Hill Stability of Orbits in ASTROPHYSICS AND SPACE SCIENCE
  • 1979-08. Effect of perturbed potentials on the stability of libration points in the restricted problem in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1981-03. Hill stability of satellite orbits in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2012-03-27. Oblateness effect of Saturn on periodic orbits in the Saturn-Titan restricted three-body problem in ASTROPHYSICS AND SPACE SCIENCE
  • 2012-09-06. Motion in the generalized restricted three-body problem in ASTROPHYSICS AND SPACE SCIENCE
  • 2011-08-31. On the triangular libration points in photogravitational restricted three-body problem with variable mass in ASTROPHYSICS AND SPACE SCIENCE
  • 1985-03. Effect of perturbations on the stability of triangular points. In the restricted problem of three bodies with variable mass in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1976-03. Stationary solutions and their characteristic exponents in the restricted three-body problem when the more massive primary is an oblate spheroid in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 2020-04. Generalized Elliptic Restricted Four-Body Problem with Variable Mass in ASTRONOMY LETTERS
  • 2008-06-13. The photogravitational Hill problem with oblateness: equilibrium points and Lyapunov families in ASTROPHYSICS AND SPACE SCIENCE
  • 2008-07-19. Combined effects of perturbations, radiation and oblateness on the periodic orbits in the restricted three-body problem in ASTROPHYSICS AND SPACE SCIENCE
  • 2012-05-10. Periodic orbits under combined effects of oblateness and radiation in the restricted problem of three bodies in ASTROPHYSICS AND SPACE SCIENCE
  • 2010-01-01. Collinear equilibrium points of Hill’s problem with radiation and oblateness and their fractal basins of attraction in ASTROPHYSICS AND SPACE SCIENCE
  • 2015-04-18. Out of plane equilibrium points locations and the forbidden movement regions in the restricted three-body problem with variable mass in ASTROPHYSICS AND SPACE SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1063773721040034

    DOI

    http://dx.doi.org/10.1134/s1063773721040034

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1139877189


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "College of Science and Arts at Buraidha, Qassim University, Qassim, Saudi Arabia", 
              "id": "http://www.grid.ac/institutes/grid.412602.3", 
              "name": [
                "College of Science and Arts at Buraidha, Qassim University, Qassim, Saudi Arabia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bouaziz-Kellil", 
            "givenName": "Ferdous", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01232721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042531246", 
              "https://doi.org/10.1007/bf01232721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-008-9831-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045530182", 
              "https://doi.org/10.1007/s10509-008-9831-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-009-0213-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004871483", 
              "https://doi.org/10.1007/s10509-009-0213-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063773720040015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130761467", 
              "https://doi.org/10.1134/s1063773720040015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063773709050107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039647355", 
              "https://doi.org/10.1134/s1063773709050107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-015-2294-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006368925", 
              "https://doi.org/10.1007/s10509-015-2294-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1013191030728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046666909", 
              "https://doi.org/10.1023/a:1013191030728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-012-1093-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009466338", 
              "https://doi.org/10.1007/s10509-012-1093-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-017-3169-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091599743", 
              "https://doi.org/10.1007/s10509-017-3169-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1002487228086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045585134", 
              "https://doi.org/10.1023/a:1002487228086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11038-006-9065-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051674929", 
              "https://doi.org/10.1007/s11038-006-9065-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-008-9841-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014690752", 
              "https://doi.org/10.1007/s10509-008-9841-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-012-1225-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035758335", 
              "https://doi.org/10.1007/s10509-012-1225-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001247210", 
              "https://doi.org/10.1007/bf01230730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01227652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006766461", 
              "https://doi.org/10.1007/bf01227652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-012-1052-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031165428", 
              "https://doi.org/10.1007/s10509-012-1052-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10509-011-0821-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049357205", 
              "https://doi.org/10.1007/s10509-011-0821-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003801256", 
              "https://doi.org/10.1007/bf01230231"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-04", 
        "datePublishedReg": "2021-04-01", 
        "description": "The purpose of the present paper is to investigate the motion\u2019s properties of an infinitesimal body in three-dimensional version of Hill\u2019s problem where the mass of the infinitesimal body is supposed to vary with time. As commonly done, the infinitesimal body is assumed to move under the influence of the other massive and oblate bodies that also have radiation effects. We suppose that the whole system is subject to a perturbation on Coriolis and on centrifugal forces. By using the various transformations, we extract the equations of motion and Jacobi quasi-integral. The properties like the locations of equilibrium points, regions of motion, surfaces with projection, trajectories allocation and the basins of attraction are investigated for various values of mass parameters. The stability is examined by using Meshcherskii space-time inverse transformations.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s1063773721040034", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136271", 
            "issn": [
              "0320-0108", 
              "0360-0327"
            ], 
            "name": "Astronomy Letters", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "47"
          }
        ], 
        "keywords": [
          "infinitesimal body", 
          "three-dimensional version", 
          "equations of motion", 
          "Hill problem", 
          "basins of attraction", 
          "regions of motion", 
          "equilibrium point", 
          "variable mass", 
          "inverse transformation", 
          "mass parameters", 
          "motion properties", 
          "problem", 
          "motion", 
          "present paper", 
          "radiation effects", 
          "whole system", 
          "centrifugal force", 
          "equations", 
          "Jacobi", 
          "properties", 
          "perturbations", 
          "Coriolis", 
          "version", 
          "transformation", 
          "parameters", 
          "point", 
          "allocation", 
          "force", 
          "stability", 
          "system", 
          "projections", 
          "attraction", 
          "mass", 
          "values", 
          "surface", 
          "body", 
          "time", 
          "location", 
          "region", 
          "influence", 
          "purpose", 
          "effect", 
          "basin", 
          "paper", 
          "trajectories allocation", 
          "Meshcherskii space-time inverse transformations", 
          "space-time inverse transformations"
        ], 
        "name": "Three-Dimensional Version of Hill\u2019s Problem with Variable Mass", 
        "pagination": "262-276", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1139877189"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1063773721040034"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1063773721040034", 
          "https://app.dimensions.ai/details/publication/pub.1139877189"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_879.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s1063773721040034"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063773721040034'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063773721040034'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063773721040034'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063773721040034'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      22 PREDICATES      91 URIs      65 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1063773721040034 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author N5ce5cd722596409996b07563765338a3
    4 schema:citation sg:pub.10.1007/bf01227652
    5 sg:pub.10.1007/bf01230231
    6 sg:pub.10.1007/bf01230730
    7 sg:pub.10.1007/bf01232721
    8 sg:pub.10.1007/s10509-008-9831-6
    9 sg:pub.10.1007/s10509-008-9841-4
    10 sg:pub.10.1007/s10509-009-0213-5
    11 sg:pub.10.1007/s10509-011-0821-8
    12 sg:pub.10.1007/s10509-012-1052-3
    13 sg:pub.10.1007/s10509-012-1093-7
    14 sg:pub.10.1007/s10509-012-1225-0
    15 sg:pub.10.1007/s10509-015-2294-7
    16 sg:pub.10.1007/s10509-017-3169-x
    17 sg:pub.10.1007/s11038-006-9065-y
    18 sg:pub.10.1023/a:1002487228086
    19 sg:pub.10.1023/a:1013191030728
    20 sg:pub.10.1134/s1063773709050107
    21 sg:pub.10.1134/s1063773720040015
    22 schema:datePublished 2021-04
    23 schema:datePublishedReg 2021-04-01
    24 schema:description The purpose of the present paper is to investigate the motion’s properties of an infinitesimal body in three-dimensional version of Hill’s problem where the mass of the infinitesimal body is supposed to vary with time. As commonly done, the infinitesimal body is assumed to move under the influence of the other massive and oblate bodies that also have radiation effects. We suppose that the whole system is subject to a perturbation on Coriolis and on centrifugal forces. By using the various transformations, we extract the equations of motion and Jacobi quasi-integral. The properties like the locations of equilibrium points, regions of motion, surfaces with projection, trajectories allocation and the basins of attraction are investigated for various values of mass parameters. The stability is examined by using Meshcherskii space-time inverse transformations.
    25 schema:genre article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N6658dd5778cc4a399d96d0c06e5d7f11
    29 Ncbb0fc67cb3841268ab328d195582c0d
    30 sg:journal.1136271
    31 schema:keywords Coriolis
    32 Hill problem
    33 Jacobi
    34 Meshcherskii space-time inverse transformations
    35 allocation
    36 attraction
    37 basin
    38 basins of attraction
    39 body
    40 centrifugal force
    41 effect
    42 equations
    43 equations of motion
    44 equilibrium point
    45 force
    46 infinitesimal body
    47 influence
    48 inverse transformation
    49 location
    50 mass
    51 mass parameters
    52 motion
    53 motion properties
    54 paper
    55 parameters
    56 perturbations
    57 point
    58 present paper
    59 problem
    60 projections
    61 properties
    62 purpose
    63 radiation effects
    64 region
    65 regions of motion
    66 space-time inverse transformations
    67 stability
    68 surface
    69 system
    70 three-dimensional version
    71 time
    72 trajectories allocation
    73 transformation
    74 values
    75 variable mass
    76 version
    77 whole system
    78 schema:name Three-Dimensional Version of Hill’s Problem with Variable Mass
    79 schema:pagination 262-276
    80 schema:productId N2bcaf0d427554ec5b02f2de2d1af56f2
    81 Nb09cc4bb3db74c30967022f78c0cd81f
    82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139877189
    83 https://doi.org/10.1134/s1063773721040034
    84 schema:sdDatePublished 2022-01-01T18:58
    85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    86 schema:sdPublisher N9d7d868d7e55435fa632ad16be7a24a4
    87 schema:url https://doi.org/10.1134/s1063773721040034
    88 sgo:license sg:explorer/license/
    89 sgo:sdDataset articles
    90 rdf:type schema:ScholarlyArticle
    91 N2bcaf0d427554ec5b02f2de2d1af56f2 schema:name doi
    92 schema:value 10.1134/s1063773721040034
    93 rdf:type schema:PropertyValue
    94 N5ce5cd722596409996b07563765338a3 rdf:first N5d72f351c03d48b7a44663512a2abb37
    95 rdf:rest rdf:nil
    96 N5d72f351c03d48b7a44663512a2abb37 schema:affiliation grid-institutes:grid.412602.3
    97 schema:familyName Bouaziz-Kellil
    98 schema:givenName Ferdous
    99 rdf:type schema:Person
    100 N6658dd5778cc4a399d96d0c06e5d7f11 schema:issueNumber 4
    101 rdf:type schema:PublicationIssue
    102 N9d7d868d7e55435fa632ad16be7a24a4 schema:name Springer Nature - SN SciGraph project
    103 rdf:type schema:Organization
    104 Nb09cc4bb3db74c30967022f78c0cd81f schema:name dimensions_id
    105 schema:value pub.1139877189
    106 rdf:type schema:PropertyValue
    107 Ncbb0fc67cb3841268ab328d195582c0d schema:volumeNumber 47
    108 rdf:type schema:PublicationVolume
    109 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Physical Sciences
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Astronomical and Space Sciences
    114 rdf:type schema:DefinedTerm
    115 sg:journal.1136271 schema:issn 0320-0108
    116 0360-0327
    117 schema:name Astronomy Letters
    118 schema:publisher Pleiades Publishing
    119 rdf:type schema:Periodical
    120 sg:pub.10.1007/bf01227652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006766461
    121 https://doi.org/10.1007/bf01227652
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/bf01230231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003801256
    124 https://doi.org/10.1007/bf01230231
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf01230730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001247210
    127 https://doi.org/10.1007/bf01230730
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/bf01232721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042531246
    130 https://doi.org/10.1007/bf01232721
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s10509-008-9831-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045530182
    133 https://doi.org/10.1007/s10509-008-9831-6
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s10509-008-9841-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014690752
    136 https://doi.org/10.1007/s10509-008-9841-4
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/s10509-009-0213-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004871483
    139 https://doi.org/10.1007/s10509-009-0213-5
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s10509-011-0821-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049357205
    142 https://doi.org/10.1007/s10509-011-0821-8
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/s10509-012-1052-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031165428
    145 https://doi.org/10.1007/s10509-012-1052-3
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s10509-012-1093-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009466338
    148 https://doi.org/10.1007/s10509-012-1093-7
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s10509-012-1225-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035758335
    151 https://doi.org/10.1007/s10509-012-1225-0
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s10509-015-2294-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006368925
    154 https://doi.org/10.1007/s10509-015-2294-7
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s10509-017-3169-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1091599743
    157 https://doi.org/10.1007/s10509-017-3169-x
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s11038-006-9065-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051674929
    160 https://doi.org/10.1007/s11038-006-9065-y
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1023/a:1002487228086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045585134
    163 https://doi.org/10.1023/a:1002487228086
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1023/a:1013191030728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046666909
    166 https://doi.org/10.1023/a:1013191030728
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1134/s1063773709050107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039647355
    169 https://doi.org/10.1134/s1063773709050107
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1134/s1063773720040015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130761467
    172 https://doi.org/10.1134/s1063773720040015
    173 rdf:type schema:CreativeWork
    174 grid-institutes:grid.412602.3 schema:alternateName College of Science and Arts at Buraidha, Qassim University, Qassim, Saudi Arabia
    175 schema:name College of Science and Arts at Buraidha, Qassim University, Qassim, Saudi Arabia
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...