Opacity of Ejecta in Calculations of Supernova Light Curves View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-04

AUTHORS

M. Sh. Potashov, S. I. Blinnikov, E. I. Sorokina

ABSTRACT

The plasma opacity in stars depends mainly on the local state of matter (the density, temperature, and chemical composition at the point of interest), but in supernova ejecta it also depends on the expansion velocity gradient, because the Doppler effect shifts the spectral lines differently in different ejecta layers. This effect is known in the literature as the expansion opacity. The existing approaches to the inclusion of this effect, in some cases, predict different results in identical conditions. In this paper we compare the approaches of Blinnikov (1996) and Friend and Castor (1983)–Eastman and Pinto (1993) to calculating the opacity in supernova ejecta and give examples of the influence of different approximations on the model light curves of supernovae. More... »

PAGES

204-213

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063773721030051

DOI

http://dx.doi.org/10.1134/s1063773721030051

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1139880232


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, 125047, Moscow, Russia", 
            "National Research Center \u2018\u2018Kurchatov Institute\u2019\u2019, Institute for Theoretical and Experimental Physics, ul. Bol\u2019shaya Cheremushkinskaya 25, 117218, Moscow, Russia", 
            "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Potashov", 
        "givenName": "M. Sh.", 
        "id": "sg:person.015347320627.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015347320627.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119234, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "National Research Center \u2018\u2018Kurchatov Institute\u2019\u2019, Institute for Theoretical and Experimental Physics, ul. Bol\u2019shaya Cheremushkinskaya 25, 117218, Moscow, Russia", 
            "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia", 
            "Dukhov All-Russian Research Institute of Automatics, ul. Sushchevskaya 22, 127055, Moscow, Russia", 
            "Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119234, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blinnikov", 
        "givenName": "S. I.", 
        "id": "sg:person.013105006175.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013105006175.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119234, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "National Research Center \u2018\u2018Kurchatov Institute\u2019\u2019, Institute for Theoretical and Experimental Physics, ul. Bol\u2019shaya Cheremushkinskaya 25, 117218, Moscow, Russia", 
            "Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119234, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sorokina", 
        "givenName": "E. I.", 
        "id": "sg:person.012413200401.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413200401.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/1.1738152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049154757", 
          "https://doi.org/10.1134/1.1738152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364013200034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013443713", 
          "https://doi.org/10.1134/s0021364013200034"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-04", 
    "datePublishedReg": "2021-04-01", 
    "description": "The plasma opacity in stars depends mainly on the local state of matter (the density, temperature, and chemical composition at the point of interest), but in supernova ejecta it also depends on the expansion velocity gradient, because the Doppler effect shifts the spectral lines differently in different ejecta layers. This effect is known in the literature as the expansion opacity. The existing approaches to the inclusion of this effect, in some cases, predict different results in identical conditions. In this paper we compare the approaches of Blinnikov (1996) and Friend and Castor (1983)\u2013Eastman and Pinto (1993) to calculating the opacity in supernova ejecta and give examples of the influence of different approximations on the model light curves of supernovae.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063773721030051", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136271", 
        "issn": [
          "0320-0108", 
          "0360-0327"
        ], 
        "name": "Astronomy Letters", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "keywords": [
      "supernova ejecta", 
      "light curves", 
      "supernova light curves", 
      "model light curves", 
      "plasma opacity", 
      "spectral lines", 
      "expansion opacity", 
      "Doppler effect", 
      "ejecta", 
      "different approximations", 
      "supernovae", 
      "stars", 
      "velocity gradient", 
      "opacity", 
      "calculations", 
      "local state", 
      "approximation", 
      "layer", 
      "state", 
      "matter", 
      "identical conditions", 
      "curves", 
      "ejecta layer", 
      "effect", 
      "gradient", 
      "different results", 
      "lines", 
      "Eastman", 
      "castor", 
      "results", 
      "example", 
      "influence", 
      "approach", 
      "conditions", 
      "inclusion", 
      "cases", 
      "paper", 
      "literature", 
      "Pinto", 
      "friends", 
      "expansion velocity gradient", 
      "different ejecta layers", 
      "approaches of Blinnikov", 
      "Blinnikov", 
      "Opacity of Ejecta"
    ], 
    "name": "Opacity of Ejecta in Calculations of Supernova Light Curves", 
    "pagination": "204-213", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1139880232"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063773721030051"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063773721030051", 
      "https://app.dimensions.ai/details/publication/pub.1139880232"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_908.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063773721030051"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063773721030051'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063773721030051'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063773721030051'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063773721030051'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      22 PREDICATES      73 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063773721030051 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nbf5c6c98f9414b81ad29b4ac762cdc6a
4 schema:citation sg:pub.10.1134/1.1738152
5 sg:pub.10.1134/s0021364013200034
6 schema:datePublished 2021-04
7 schema:datePublishedReg 2021-04-01
8 schema:description The plasma opacity in stars depends mainly on the local state of matter (the density, temperature, and chemical composition at the point of interest), but in supernova ejecta it also depends on the expansion velocity gradient, because the Doppler effect shifts the spectral lines differently in different ejecta layers. This effect is known in the literature as the expansion opacity. The existing approaches to the inclusion of this effect, in some cases, predict different results in identical conditions. In this paper we compare the approaches of Blinnikov (1996) and Friend and Castor (1983)–Eastman and Pinto (1993) to calculating the opacity in supernova ejecta and give examples of the influence of different approximations on the model light curves of supernovae.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N089d8a108368473391999cee4c06882e
13 Nb0e13e74dff94734a55acbe72bd82e36
14 sg:journal.1136271
15 schema:keywords Blinnikov
16 Doppler effect
17 Eastman
18 Opacity of Ejecta
19 Pinto
20 approach
21 approaches of Blinnikov
22 approximation
23 calculations
24 cases
25 castor
26 conditions
27 curves
28 different approximations
29 different ejecta layers
30 different results
31 effect
32 ejecta
33 ejecta layer
34 example
35 expansion opacity
36 expansion velocity gradient
37 friends
38 gradient
39 identical conditions
40 inclusion
41 influence
42 layer
43 light curves
44 lines
45 literature
46 local state
47 matter
48 model light curves
49 opacity
50 paper
51 plasma opacity
52 results
53 spectral lines
54 stars
55 state
56 supernova ejecta
57 supernova light curves
58 supernovae
59 velocity gradient
60 schema:name Opacity of Ejecta in Calculations of Supernova Light Curves
61 schema:pagination 204-213
62 schema:productId N61a3da876f274b6e99dc9144b8ee6691
63 Ndd220f5d3780473aa915afaf92482356
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139880232
65 https://doi.org/10.1134/s1063773721030051
66 schema:sdDatePublished 2022-01-01T18:59
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N9df709b2890a4890b6d1d363effc59dc
69 schema:url https://doi.org/10.1134/s1063773721030051
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N089d8a108368473391999cee4c06882e schema:volumeNumber 47
74 rdf:type schema:PublicationVolume
75 N37004660a0ad4bb8b676aa8e7423d8ae rdf:first sg:person.012413200401.27
76 rdf:rest rdf:nil
77 N61a3da876f274b6e99dc9144b8ee6691 schema:name dimensions_id
78 schema:value pub.1139880232
79 rdf:type schema:PropertyValue
80 N86f8a8906e4b4fbfb1b6f8178fa4d46f rdf:first sg:person.013105006175.62
81 rdf:rest N37004660a0ad4bb8b676aa8e7423d8ae
82 N9df709b2890a4890b6d1d363effc59dc schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nb0e13e74dff94734a55acbe72bd82e36 schema:issueNumber 4
85 rdf:type schema:PublicationIssue
86 Nbf5c6c98f9414b81ad29b4ac762cdc6a rdf:first sg:person.015347320627.44
87 rdf:rest N86f8a8906e4b4fbfb1b6f8178fa4d46f
88 Ndd220f5d3780473aa915afaf92482356 schema:name doi
89 schema:value 10.1134/s1063773721030051
90 rdf:type schema:PropertyValue
91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
92 schema:name Physical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
95 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
96 rdf:type schema:DefinedTerm
97 sg:journal.1136271 schema:issn 0320-0108
98 0360-0327
99 schema:name Astronomy Letters
100 schema:publisher Pleiades Publishing
101 rdf:type schema:Periodical
102 sg:person.012413200401.27 schema:affiliation grid-institutes:grid.14476.30
103 schema:familyName Sorokina
104 schema:givenName E. I.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413200401.27
106 rdf:type schema:Person
107 sg:person.013105006175.62 schema:affiliation grid-institutes:grid.14476.30
108 schema:familyName Blinnikov
109 schema:givenName S. I.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013105006175.62
111 rdf:type schema:Person
112 sg:person.015347320627.44 schema:affiliation grid-institutes:grid.4605.7
113 schema:familyName Potashov
114 schema:givenName M. Sh.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015347320627.44
116 rdf:type schema:Person
117 sg:pub.10.1134/1.1738152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049154757
118 https://doi.org/10.1134/1.1738152
119 rdf:type schema:CreativeWork
120 sg:pub.10.1134/s0021364013200034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013443713
121 https://doi.org/10.1134/s0021364013200034
122 rdf:type schema:CreativeWork
123 grid-institutes:grid.14476.30 schema:alternateName Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119234, Moscow, Russia
124 schema:name Dukhov All-Russian Research Institute of Automatics, ul. Sushchevskaya 22, 127055, Moscow, Russia
125 National Research Center ‘‘Kurchatov Institute’’, Institute for Theoretical and Experimental Physics, ul. Bol’shaya Cheremushkinskaya 25, 117218, Moscow, Russia
126 Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia
127 Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119234, Moscow, Russia
128 rdf:type schema:Organization
129 grid-institutes:grid.4605.7 schema:alternateName Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia
130 schema:name Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, 125047, Moscow, Russia
131 National Research Center ‘‘Kurchatov Institute’’, Institute for Theoretical and Experimental Physics, ul. Bol’shaya Cheremushkinskaya 25, 117218, Moscow, Russia
132 Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...