Ontology type: schema:ScholarlyArticle Open Access: True
2019-08-05
AUTHORSM. S. Murga, V. N. Varakin, A. V. Stolyarov, D. S. Wiebe
ABSTRACTThe results of laboratory mass-spectrometer studies of the laser-induced dissociation of molecules of simple aromatic hydrocarbons adsorbed on a quartz substrate under the conditions of deep vacuum and low temperatures are adapted to the physical and chemical conditions in regions of active star formation in molecular clouds. The main properties of the photolysis of physically adsorbed molecules compared to the photodissociation of isolated molecules in the gas phase are identified. The relevance of molecular photolytic desorption to the real conditions in the interstellar medium is analyzed, in particular, to the conditions in photodissociation regions. It is shown that the photodissociation of adsorbed benzene occurs along other channels and with appreciably lower efficiency than does the corresponding process in the gas phase. The photodissociation of aromatic hydrocarbons adsorbed on the surfaces of interstellar grains cannot make a large contribution to the abundance of hydrocarbons with small numbers of atoms observed in the interstellar medium. More... »
PAGES633-641
http://scigraph.springernature.com/pub.10.1134/s1063772919080043
DOIhttp://dx.doi.org/10.1134/s1063772919080043
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1120145150
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Astronomical and Space Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Lomonosov Moscow State University, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.14476.30",
"name": [
"Institute of Astronomy, Russian Academy of Sciences, 119017, Moscow, Russia",
"Lomonosov Moscow State University, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Murga",
"givenName": "M. S.",
"id": "sg:person.014654667175.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014654667175.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Lomonosov Moscow State University, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.14476.30",
"name": [
"Lomonosov Moscow State University, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Varakin",
"givenName": "V. N.",
"id": "sg:person.014725144307.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014725144307.20"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Lomonosov Moscow State University, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.14476.30",
"name": [
"Lomonosov Moscow State University, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Stolyarov",
"givenName": "A. V.",
"id": "sg:person.0700631733.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700631733.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Astronomy, Russian Academy of Sciences, 119017, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.465335.2",
"name": [
"Institute of Astronomy, Russian Academy of Sciences, 119017, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Wiebe",
"givenName": "D. S.",
"id": "sg:person.015110315535.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110315535.16"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1134/s1063772916020104",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046749861",
"https://doi.org/10.1134/s1063772916020104"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-08-05",
"datePublishedReg": "2019-08-05",
"description": "The results of laboratory mass-spectrometer studies of the laser-induced dissociation of molecules of simple aromatic hydrocarbons adsorbed on a quartz substrate under the conditions of deep vacuum and low temperatures are adapted to the physical and chemical conditions in regions of active star formation in molecular clouds. The main properties of the photolysis of physically adsorbed molecules compared to the photodissociation of isolated molecules in the gas phase are identified. The relevance of molecular photolytic desorption to the real conditions in the interstellar medium is analyzed, in particular, to the conditions in photodissociation regions. It is shown that the photodissociation of adsorbed benzene occurs along other channels and with appreciably lower efficiency than does the corresponding process in the gas phase. The photodissociation of aromatic hydrocarbons adsorbed on the surfaces of interstellar grains cannot make a large contribution to the abundance of hydrocarbons with small numbers of atoms observed in the interstellar medium.",
"genre": "article",
"id": "sg:pub.10.1134/s1063772919080043",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136138",
"issn": [
"0004-6299",
"1063-7729"
],
"name": "Astronomy Reports",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "8",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "63"
}
],
"keywords": [
"gas phase",
"mass spectrometer study",
"simple aromatic hydrocarbons",
"laser-induced dissociation",
"aromatic hydrocarbons",
"adsorbed benzene",
"abundance of hydrocarbons",
"chemical conditions",
"molecules",
"photodissociation",
"quartz substrates",
"photolysis",
"hydrocarbons",
"interstellar grains",
"cosmic dust grains",
"interstellar medium",
"low temperature",
"Adsorbed",
"deep vacuum",
"surface",
"benzene",
"desorption",
"atoms",
"dissociation",
"corresponding process",
"phase",
"large contribution",
"low efficiency",
"substrate",
"properties",
"photodissociation regions",
"formation",
"molecular clouds",
"medium",
"vacuum",
"main properties",
"active star formation",
"temperature",
"conditions",
"star formation",
"efficiency",
"dust grains",
"process",
"real conditions",
"grains",
"contribution",
"channels",
"results",
"study",
"abundance",
"region",
"cloud",
"number",
"relevance",
"small number"
],
"name": "The Photolysis of Aromatic Hydrocarbons Adsorbed on the Surfaces of Cosmic Dust Grains",
"pagination": "633-641",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1120145150"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063772919080043"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063772919080043",
"https://app.dimensions.ai/details/publication/pub.1120145150"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:27",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_831.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063772919080043"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063772919080043'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063772919080043'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063772919080043'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063772919080043'
This table displays all metadata directly associated to this object as RDF triples.
142 TRIPLES
22 PREDICATES
81 URIs
72 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063772919080043 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0201 |
3 | ″ | schema:author | N59660319dfec4e1ead169562bdb7b0e6 |
4 | ″ | schema:citation | sg:pub.10.1134/s1063772916020104 |
5 | ″ | schema:datePublished | 2019-08-05 |
6 | ″ | schema:datePublishedReg | 2019-08-05 |
7 | ″ | schema:description | The results of laboratory mass-spectrometer studies of the laser-induced dissociation of molecules of simple aromatic hydrocarbons adsorbed on a quartz substrate under the conditions of deep vacuum and low temperatures are adapted to the physical and chemical conditions in regions of active star formation in molecular clouds. The main properties of the photolysis of physically adsorbed molecules compared to the photodissociation of isolated molecules in the gas phase are identified. The relevance of molecular photolytic desorption to the real conditions in the interstellar medium is analyzed, in particular, to the conditions in photodissociation regions. It is shown that the photodissociation of adsorbed benzene occurs along other channels and with appreciably lower efficiency than does the corresponding process in the gas phase. The photodissociation of aromatic hydrocarbons adsorbed on the surfaces of interstellar grains cannot make a large contribution to the abundance of hydrocarbons with small numbers of atoms observed in the interstellar medium. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N2b1710da3297413f9bdac4eb16a59006 |
12 | ″ | ″ | Neaa5eef0ee284e88ba7afa7d810c17af |
13 | ″ | ″ | sg:journal.1136138 |
14 | ″ | schema:keywords | Adsorbed |
15 | ″ | ″ | abundance |
16 | ″ | ″ | abundance of hydrocarbons |
17 | ″ | ″ | active star formation |
18 | ″ | ″ | adsorbed benzene |
19 | ″ | ″ | aromatic hydrocarbons |
20 | ″ | ″ | atoms |
21 | ″ | ″ | benzene |
22 | ″ | ″ | channels |
23 | ″ | ″ | chemical conditions |
24 | ″ | ″ | cloud |
25 | ″ | ″ | conditions |
26 | ″ | ″ | contribution |
27 | ″ | ″ | corresponding process |
28 | ″ | ″ | cosmic dust grains |
29 | ″ | ″ | deep vacuum |
30 | ″ | ″ | desorption |
31 | ″ | ″ | dissociation |
32 | ″ | ″ | dust grains |
33 | ″ | ″ | efficiency |
34 | ″ | ″ | formation |
35 | ″ | ″ | gas phase |
36 | ″ | ″ | grains |
37 | ″ | ″ | hydrocarbons |
38 | ″ | ″ | interstellar grains |
39 | ″ | ″ | interstellar medium |
40 | ″ | ″ | large contribution |
41 | ″ | ″ | laser-induced dissociation |
42 | ″ | ″ | low efficiency |
43 | ″ | ″ | low temperature |
44 | ″ | ″ | main properties |
45 | ″ | ″ | mass spectrometer study |
46 | ″ | ″ | medium |
47 | ″ | ″ | molecular clouds |
48 | ″ | ″ | molecules |
49 | ″ | ″ | number |
50 | ″ | ″ | phase |
51 | ″ | ″ | photodissociation |
52 | ″ | ″ | photodissociation regions |
53 | ″ | ″ | photolysis |
54 | ″ | ″ | process |
55 | ″ | ″ | properties |
56 | ″ | ″ | quartz substrates |
57 | ″ | ″ | real conditions |
58 | ″ | ″ | region |
59 | ″ | ″ | relevance |
60 | ″ | ″ | results |
61 | ″ | ″ | simple aromatic hydrocarbons |
62 | ″ | ″ | small number |
63 | ″ | ″ | star formation |
64 | ″ | ″ | study |
65 | ″ | ″ | substrate |
66 | ″ | ″ | surface |
67 | ″ | ″ | temperature |
68 | ″ | ″ | vacuum |
69 | ″ | schema:name | The Photolysis of Aromatic Hydrocarbons Adsorbed on the Surfaces of Cosmic Dust Grains |
70 | ″ | schema:pagination | 633-641 |
71 | ″ | schema:productId | N427a45b1e2514b0985672f2fc5e94120 |
72 | ″ | ″ | N81cd651bb6bd4abba92e7d37df8b0770 |
73 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1120145150 |
74 | ″ | ″ | https://doi.org/10.1134/s1063772919080043 |
75 | ″ | schema:sdDatePublished | 2022-05-10T10:27 |
76 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
77 | ″ | schema:sdPublisher | Nd78e54bfbd5a4ef5a3e2d5631b04fd14 |
78 | ″ | schema:url | https://doi.org/10.1134/s1063772919080043 |
79 | ″ | sgo:license | sg:explorer/license/ |
80 | ″ | sgo:sdDataset | articles |
81 | ″ | rdf:type | schema:ScholarlyArticle |
82 | N2b1710da3297413f9bdac4eb16a59006 | schema:volumeNumber | 63 |
83 | ″ | rdf:type | schema:PublicationVolume |
84 | N3f766e5b091a4d9cbbd53ed90bccd84e | rdf:first | sg:person.0700631733.37 |
85 | ″ | rdf:rest | N87324e4453b24a94ab2d1993a1e76f4e |
86 | N427a45b1e2514b0985672f2fc5e94120 | schema:name | doi |
87 | ″ | schema:value | 10.1134/s1063772919080043 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | N5175de4f77d0401c8659f0169a0b8fa8 | rdf:first | sg:person.014725144307.20 |
90 | ″ | rdf:rest | N3f766e5b091a4d9cbbd53ed90bccd84e |
91 | N59660319dfec4e1ead169562bdb7b0e6 | rdf:first | sg:person.014654667175.48 |
92 | ″ | rdf:rest | N5175de4f77d0401c8659f0169a0b8fa8 |
93 | N81cd651bb6bd4abba92e7d37df8b0770 | schema:name | dimensions_id |
94 | ″ | schema:value | pub.1120145150 |
95 | ″ | rdf:type | schema:PropertyValue |
96 | N87324e4453b24a94ab2d1993a1e76f4e | rdf:first | sg:person.015110315535.16 |
97 | ″ | rdf:rest | rdf:nil |
98 | Nd78e54bfbd5a4ef5a3e2d5631b04fd14 | schema:name | Springer Nature - SN SciGraph project |
99 | ″ | rdf:type | schema:Organization |
100 | Neaa5eef0ee284e88ba7afa7d810c17af | schema:issueNumber | 8 |
101 | ″ | rdf:type | schema:PublicationIssue |
102 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Physical Sciences |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:0201 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Astronomical and Space Sciences |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | sg:journal.1136138 | schema:issn | 0004-6299 |
109 | ″ | ″ | 1063-7729 |
110 | ″ | schema:name | Astronomy Reports |
111 | ″ | schema:publisher | Pleiades Publishing |
112 | ″ | rdf:type | schema:Periodical |
113 | sg:person.014654667175.48 | schema:affiliation | grid-institutes:grid.14476.30 |
114 | ″ | schema:familyName | Murga |
115 | ″ | schema:givenName | M. S. |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014654667175.48 |
117 | ″ | rdf:type | schema:Person |
118 | sg:person.014725144307.20 | schema:affiliation | grid-institutes:grid.14476.30 |
119 | ″ | schema:familyName | Varakin |
120 | ″ | schema:givenName | V. N. |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014725144307.20 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.015110315535.16 | schema:affiliation | grid-institutes:grid.465335.2 |
124 | ″ | schema:familyName | Wiebe |
125 | ″ | schema:givenName | D. S. |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110315535.16 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.0700631733.37 | schema:affiliation | grid-institutes:grid.14476.30 |
129 | ″ | schema:familyName | Stolyarov |
130 | ″ | schema:givenName | A. V. |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700631733.37 |
132 | ″ | rdf:type | schema:Person |
133 | sg:pub.10.1134/s1063772916020104 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046749861 |
134 | ″ | ″ | https://doi.org/10.1134/s1063772916020104 |
135 | ″ | rdf:type | schema:CreativeWork |
136 | grid-institutes:grid.14476.30 | schema:alternateName | Lomonosov Moscow State University, Moscow, Russia |
137 | ″ | schema:name | Institute of Astronomy, Russian Academy of Sciences, 119017, Moscow, Russia |
138 | ″ | ″ | Lomonosov Moscow State University, Moscow, Russia |
139 | ″ | rdf:type | schema:Organization |
140 | grid-institutes:grid.465335.2 | schema:alternateName | Institute of Astronomy, Russian Academy of Sciences, 119017, Moscow, Russia |
141 | ″ | schema:name | Institute of Astronomy, Russian Academy of Sciences, 119017, Moscow, Russia |
142 | ″ | rdf:type | schema:Organization |