Restructuring and destruction of hydrocarbon dust in the interstellar medium View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02-17

AUTHORS

M. S. Murga, S. A. Khoperskov, D. S. Wiebe

ABSTRACT

A model describing the main processes determining the evolution of hydrocarbon dust grains of arbitrary size under astrophysical conditions corresponding to regions of ionized hydrogen (HII regions) and supernova remnants is presented. The processes considered include aromatization and photodestruction, sputtering by electrons and ions, and shattering during collisions between grains. The model can be used to calculate the size distribution of the grains and the degree of aromatization during the evolution of HII regions and supernova remnants for a specified radiation field, relative velocity between the gas and dust, etc. The contribution of various processes to the evolution of hydrocarbon dust grains for parameters typical for the interstellar medium of our Galaxy is considered. Small grains (with fewer than 50 carbon atoms) should be fully aromatized in the interstellar medium. If larger grains initially have an aliphatic structure, this is preserved to a substantial extent. Variation in the size distribution of the grains due to collisions between grains depend appreciably on the adopted initial size distribution. With an initial distribution corresponding to that of Mathis et al. (1977), the mass fraction contributed by smaller grains tends to increase with time, while, with an initial distribution corresponding to that of Jones et al. (2013), in which the fraction of small grains is initially high, there is a general decrease in the number of grains of various sizes with time. More... »

PAGES

233-251

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063772916020104

DOI

http://dx.doi.org/10.1134/s1063772916020104

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046749861


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Astronomy, Russian Academy of Sciences, ul. Pyatnitskaya 48, 119017, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465335.2", 
          "name": [
            "Institute of Astronomy, Russian Academy of Sciences, ul. Pyatnitskaya 48, 119017, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murga", 
        "givenName": "M. S.", 
        "id": "sg:person.014654667175.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014654667175.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskii pr. 13, 119992, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Institute of Astronomy, Russian Academy of Sciences, ul. Pyatnitskaya 48, 119017, Moscow, Russia", 
            "Universit\u00e1 degli Studi di Milano, Dipartimento di Fisica, via Celoria 16, I-20133, Milano, Italy", 
            "Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskii pr. 13, 119992, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khoperskov", 
        "givenName": "S. A.", 
        "id": "sg:person.012306335250.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012306335250.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Astronomy, Russian Academy of Sciences, ul. Pyatnitskaya 48, 119017, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465335.2", 
          "name": [
            "Institute of Astronomy, Russian Academy of Sciences, ul. Pyatnitskaya 48, 119017, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wiebe", 
        "givenName": "D. S.", 
        "id": "sg:person.015110315535.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110315535.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063773714050065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010101636", 
          "https://doi.org/10.1134/s1063773714050065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-2462-8_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016799920", 
          "https://doi.org/10.1007/978-94-009-2462-8_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-8103-1_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017591681", 
          "https://doi.org/10.1007/978-1-4615-8103-1_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063772913070056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001172147", 
          "https://doi.org/10.1134/s1063772913070056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029651872", 
          "https://doi.org/10.1038/nature10542"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-17", 
    "datePublishedReg": "2016-02-17", 
    "description": "A model describing the main processes determining the evolution of hydrocarbon dust grains of arbitrary size under astrophysical conditions corresponding to regions of ionized hydrogen (HII regions) and supernova remnants is presented. The processes considered include aromatization and photodestruction, sputtering by electrons and ions, and shattering during collisions between grains. The model can be used to calculate the size distribution of the grains and the degree of aromatization during the evolution of HII regions and supernova remnants for a specified radiation field, relative velocity between the gas and dust, etc. The contribution of various processes to the evolution of hydrocarbon dust grains for parameters typical for the interstellar medium of our Galaxy is considered. Small grains (with fewer than 50 carbon atoms) should be fully aromatized in the interstellar medium. If larger grains initially have an aliphatic structure, this is preserved to a substantial extent. Variation in the size distribution of the grains due to collisions between grains depend appreciably on the adopted initial size distribution. With an initial distribution corresponding to that of Mathis et al. (1977), the mass fraction contributed by smaller grains tends to increase with time, while, with an initial distribution corresponding to that of Jones et al. (2013), in which the fraction of small grains is initially high, there is a general decrease in the number of grains of various sizes with time.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063772916020104", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136138", 
        "issn": [
          "0004-6299", 
          "1063-7729"
        ], 
        "name": "Astronomy Reports", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "interstellar medium", 
      "supernova remnants", 
      "dust grains", 
      "specified radiation field", 
      "HII regions", 
      "astrophysical conditions", 
      "radiation field", 
      "small grains", 
      "collisions", 
      "initial distribution", 
      "relative velocity", 
      "galaxies", 
      "large grains", 
      "electrons", 
      "size distribution", 
      "dust", 
      "remnants", 
      "ions", 
      "et al", 
      "evolution", 
      "al", 
      "mass fraction", 
      "Jones et al", 
      "distribution", 
      "field", 
      "gas", 
      "hydrogen", 
      "photodestruction", 
      "main processes", 
      "grains", 
      "region", 
      "velocity", 
      "medium", 
      "structure", 
      "arbitrary size", 
      "process", 
      "fraction", 
      "size", 
      "contribution", 
      "model", 
      "degree of aromatization", 
      "parameters", 
      "Mathis", 
      "time", 
      "aliphatic structures", 
      "variation", 
      "initial size distribution", 
      "conditions", 
      "degree", 
      "decrease", 
      "number", 
      "destruction", 
      "general decrease", 
      "restructuring", 
      "extent", 
      "number of grains", 
      "substantial extent", 
      "aromatization", 
      "hydrocarbon dust grains", 
      "hydrocarbon dust"
    ], 
    "name": "Restructuring and destruction of hydrocarbon dust in the interstellar medium", 
    "pagination": "233-251", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046749861"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063772916020104"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063772916020104", 
      "https://app.dimensions.ai/details/publication/pub.1046749861"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_715.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063772916020104"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063772916020104'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063772916020104'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063772916020104'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063772916020104'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      22 PREDICATES      90 URIs      77 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063772916020104 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N4984aae6e71f472182c9c96417ce5fda
4 schema:citation sg:pub.10.1007/978-1-4615-8103-1_3
5 sg:pub.10.1007/978-94-009-2462-8_1
6 sg:pub.10.1038/nature10542
7 sg:pub.10.1134/s1063772913070056
8 sg:pub.10.1134/s1063773714050065
9 schema:datePublished 2016-02-17
10 schema:datePublishedReg 2016-02-17
11 schema:description A model describing the main processes determining the evolution of hydrocarbon dust grains of arbitrary size under astrophysical conditions corresponding to regions of ionized hydrogen (HII regions) and supernova remnants is presented. The processes considered include aromatization and photodestruction, sputtering by electrons and ions, and shattering during collisions between grains. The model can be used to calculate the size distribution of the grains and the degree of aromatization during the evolution of HII regions and supernova remnants for a specified radiation field, relative velocity between the gas and dust, etc. The contribution of various processes to the evolution of hydrocarbon dust grains for parameters typical for the interstellar medium of our Galaxy is considered. Small grains (with fewer than 50 carbon atoms) should be fully aromatized in the interstellar medium. If larger grains initially have an aliphatic structure, this is preserved to a substantial extent. Variation in the size distribution of the grains due to collisions between grains depend appreciably on the adopted initial size distribution. With an initial distribution corresponding to that of Mathis et al. (1977), the mass fraction contributed by smaller grains tends to increase with time, while, with an initial distribution corresponding to that of Jones et al. (2013), in which the fraction of small grains is initially high, there is a general decrease in the number of grains of various sizes with time.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N0ce5e86dee72441eb1d86423cdeb3ad2
16 N9c80b54c361842288d3340c5a0a464b0
17 sg:journal.1136138
18 schema:keywords HII regions
19 Jones et al
20 Mathis
21 al
22 aliphatic structures
23 arbitrary size
24 aromatization
25 astrophysical conditions
26 collisions
27 conditions
28 contribution
29 decrease
30 degree
31 degree of aromatization
32 destruction
33 distribution
34 dust
35 dust grains
36 electrons
37 et al
38 evolution
39 extent
40 field
41 fraction
42 galaxies
43 gas
44 general decrease
45 grains
46 hydrocarbon dust
47 hydrocarbon dust grains
48 hydrogen
49 initial distribution
50 initial size distribution
51 interstellar medium
52 ions
53 large grains
54 main processes
55 mass fraction
56 medium
57 model
58 number
59 number of grains
60 parameters
61 photodestruction
62 process
63 radiation field
64 region
65 relative velocity
66 remnants
67 restructuring
68 size
69 size distribution
70 small grains
71 specified radiation field
72 structure
73 substantial extent
74 supernova remnants
75 time
76 variation
77 velocity
78 schema:name Restructuring and destruction of hydrocarbon dust in the interstellar medium
79 schema:pagination 233-251
80 schema:productId N1456c5f38fb94c28934398c9304cb6d6
81 N5c6a516edb8047f096b1428195e1931f
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046749861
83 https://doi.org/10.1134/s1063772916020104
84 schema:sdDatePublished 2022-01-01T18:42
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N826fdcdf4c324aedae769e5df475eab5
87 schema:url https://doi.org/10.1134/s1063772916020104
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N0ce5e86dee72441eb1d86423cdeb3ad2 schema:issueNumber 2
92 rdf:type schema:PublicationIssue
93 N1456c5f38fb94c28934398c9304cb6d6 schema:name dimensions_id
94 schema:value pub.1046749861
95 rdf:type schema:PropertyValue
96 N169fcc6896f049de80f064c68bad3e82 rdf:first sg:person.015110315535.16
97 rdf:rest rdf:nil
98 N369dad8e9b754196b419e913e62be442 rdf:first sg:person.012306335250.52
99 rdf:rest N169fcc6896f049de80f064c68bad3e82
100 N4984aae6e71f472182c9c96417ce5fda rdf:first sg:person.014654667175.48
101 rdf:rest N369dad8e9b754196b419e913e62be442
102 N5c6a516edb8047f096b1428195e1931f schema:name doi
103 schema:value 10.1134/s1063772916020104
104 rdf:type schema:PropertyValue
105 N826fdcdf4c324aedae769e5df475eab5 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N9c80b54c361842288d3340c5a0a464b0 schema:volumeNumber 60
108 rdf:type schema:PublicationVolume
109 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
110 schema:name Physical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
113 schema:name Astronomical and Space Sciences
114 rdf:type schema:DefinedTerm
115 sg:journal.1136138 schema:issn 0004-6299
116 1063-7729
117 schema:name Astronomy Reports
118 schema:publisher Pleiades Publishing
119 rdf:type schema:Periodical
120 sg:person.012306335250.52 schema:affiliation grid-institutes:grid.14476.30
121 schema:familyName Khoperskov
122 schema:givenName S. A.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012306335250.52
124 rdf:type schema:Person
125 sg:person.014654667175.48 schema:affiliation grid-institutes:grid.465335.2
126 schema:familyName Murga
127 schema:givenName M. S.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014654667175.48
129 rdf:type schema:Person
130 sg:person.015110315535.16 schema:affiliation grid-institutes:grid.465335.2
131 schema:familyName Wiebe
132 schema:givenName D. S.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110315535.16
134 rdf:type schema:Person
135 sg:pub.10.1007/978-1-4615-8103-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017591681
136 https://doi.org/10.1007/978-1-4615-8103-1_3
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-94-009-2462-8_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016799920
139 https://doi.org/10.1007/978-94-009-2462-8_1
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nature10542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029651872
142 https://doi.org/10.1038/nature10542
143 rdf:type schema:CreativeWork
144 sg:pub.10.1134/s1063772913070056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001172147
145 https://doi.org/10.1134/s1063772913070056
146 rdf:type schema:CreativeWork
147 sg:pub.10.1134/s1063773714050065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010101636
148 https://doi.org/10.1134/s1063773714050065
149 rdf:type schema:CreativeWork
150 grid-institutes:grid.14476.30 schema:alternateName Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskii pr. 13, 119992, Moscow, Russia
151 schema:name Institute of Astronomy, Russian Academy of Sciences, ul. Pyatnitskaya 48, 119017, Moscow, Russia
152 Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskii pr. 13, 119992, Moscow, Russia
153 Universitá degli Studi di Milano, Dipartimento di Fisica, via Celoria 16, I-20133, Milano, Italy
154 rdf:type schema:Organization
155 grid-institutes:grid.465335.2 schema:alternateName Institute of Astronomy, Russian Academy of Sciences, ul. Pyatnitskaya 48, 119017, Moscow, Russia
156 schema:name Institute of Astronomy, Russian Academy of Sciences, ul. Pyatnitskaya 48, 119017, Moscow, Russia
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...