Infrared emission and the destruction of dust in HII regions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-08-08

AUTHORS

Ya. N. Pavlyuchenkov, M. S. Kirsanova, D. S. Wiebe

ABSTRACT

The generation of infrared (IR) radiation and the observed IR-intensity distribution at wavelengths of 8, 24, and 100 µm in the ionized hydrogen region around a young, massive star is investigated. The evolution of the HII region is treated using a self-consistent chemical-dynamical model in which three dust populations are included—large silicate grains, small graphite grains, and polycyclic, aromatic hydrocarbons (PAHs). A radiative transfer model taking into account stochastic heating of small grains and macromolecules is used to model the IR spectral energy distribution. The computational results are compared with Spitzer and Herschel observations of the RCW 120 nebula. The contributions of collisions with gas particles and the radiation field of the star to stochastic heating of small grains are investigated. It is shown that a model with a homogeneous PAH content cannot reproduce the ring-like IR-intensity distribution at 8 µm. A model in which PAHs are destroyed by ultraviolet radiation of the star, generating region HII, provides a means to explain this intensity distribution. This model is in agreement with observations for realistic characteristic destruction times for the PAHs. More... »

PAGES

573-585

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063772913070056

DOI

http://dx.doi.org/10.1134/s1063772913070056

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001172147


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465335.2", 
          "name": [
            "Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pavlyuchenkov", 
        "givenName": "Ya. N.", 
        "id": "sg:person.012666170751.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012666170751.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465335.2", 
          "name": [
            "Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirsanova", 
        "givenName": "M. S.", 
        "id": "sg:person.013607324544.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607324544.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465335.2", 
          "name": [
            "Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wiebe", 
        "givenName": "D. S.", 
        "id": "sg:person.015110315535.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110315535.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063772911010057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038285853", 
          "https://doi.org/10.1134/s1063772911010057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s106377290907004x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022032051", 
          "https://doi.org/10.1134/s106377290907004x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-08-08", 
    "datePublishedReg": "2013-08-08", 
    "description": "The generation of infrared (IR) radiation and the observed IR-intensity distribution at wavelengths of 8, 24, and 100 \u00b5m in the ionized hydrogen region around a young, massive star is investigated. The evolution of the HII region is treated using a self-consistent chemical-dynamical model in which three dust populations are included\u2014large silicate grains, small graphite grains, and polycyclic, aromatic hydrocarbons (PAHs). A radiative transfer model taking into account stochastic heating of small grains and macromolecules is used to model the IR spectral energy distribution. The computational results are compared with Spitzer and Herschel observations of the RCW 120 nebula. The contributions of collisions with gas particles and the radiation field of the star to stochastic heating of small grains are investigated. It is shown that a model with a homogeneous PAH content cannot reproduce the ring-like IR-intensity distribution at 8 \u00b5m. A model in which PAHs are destroyed by ultraviolet radiation of the star, generating region HII, provides a means to explain this intensity distribution. This model is in agreement with observations for realistic characteristic destruction times for the PAHs.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063772913070056", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136138", 
        "issn": [
          "0004-6299", 
          "1063-7729"
        ], 
        "name": "Astronomy Reports", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "keywords": [
      "stochastic heating", 
      "HII regions", 
      "IR spectral energy distribution", 
      "spectral energy distribution", 
      "destruction of dust", 
      "contribution of collision", 
      "massive stars", 
      "Herschel observations", 
      "radiation field", 
      "dust population", 
      "small graphite grains", 
      "energy distribution", 
      "infrared emission", 
      "infrared radiation", 
      "gas particles", 
      "stars", 
      "graphite grains", 
      "intensity distribution", 
      "radiative transfer model", 
      "small grains", 
      "silicate grains", 
      "hydrogen region", 
      "ultraviolet radiation", 
      "chemical\u2010dynamical model", 
      "radiation", 
      "Spitzer", 
      "nebula", 
      "heating", 
      "destruction time", 
      "wavelength", 
      "collisions", 
      "transfer model", 
      "emission", 
      "particles", 
      "HII", 
      "distribution", 
      "field", 
      "dust", 
      "region", 
      "grains", 
      "agreement", 
      "generation", 
      "evolution", 
      "computational results", 
      "model", 
      "macromolecules", 
      "contribution", 
      "means", 
      "time", 
      "results", 
      "aromatic hydrocarbons", 
      "hydrocarbons", 
      "destruction", 
      "PAHs", 
      "PAH content", 
      "content", 
      "population", 
      "observations", 
      "observed IR-intensity distribution", 
      "IR-intensity distribution", 
      "ionized hydrogen region", 
      "self-consistent chemical-dynamical model", 
      "included\u2014large silicate grains", 
      "account stochastic heating", 
      "RCW 120 nebula", 
      "homogeneous PAH content", 
      "ring-like IR-intensity distribution", 
      "region HII", 
      "realistic characteristic destruction times", 
      "characteristic destruction times"
    ], 
    "name": "Infrared emission and the destruction of dust in HII regions", 
    "pagination": "573-585", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001172147"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063772913070056"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063772913070056", 
      "https://app.dimensions.ai/details/publication/pub.1001172147"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_593.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063772913070056"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063772913070056'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063772913070056'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063772913070056'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063772913070056'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      22 PREDICATES      97 URIs      87 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063772913070056 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N5168d8c4ac304fa8a6a00a55a4dee5ac
4 schema:citation sg:pub.10.1134/s106377290907004x
5 sg:pub.10.1134/s1063772911010057
6 schema:datePublished 2013-08-08
7 schema:datePublishedReg 2013-08-08
8 schema:description The generation of infrared (IR) radiation and the observed IR-intensity distribution at wavelengths of 8, 24, and 100 µm in the ionized hydrogen region around a young, massive star is investigated. The evolution of the HII region is treated using a self-consistent chemical-dynamical model in which three dust populations are included—large silicate grains, small graphite grains, and polycyclic, aromatic hydrocarbons (PAHs). A radiative transfer model taking into account stochastic heating of small grains and macromolecules is used to model the IR spectral energy distribution. The computational results are compared with Spitzer and Herschel observations of the RCW 120 nebula. The contributions of collisions with gas particles and the radiation field of the star to stochastic heating of small grains are investigated. It is shown that a model with a homogeneous PAH content cannot reproduce the ring-like IR-intensity distribution at 8 µm. A model in which PAHs are destroyed by ultraviolet radiation of the star, generating region HII, provides a means to explain this intensity distribution. This model is in agreement with observations for realistic characteristic destruction times for the PAHs.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N9498d142d5b241ad8d6ae54719f01701
13 Nbceef092642a42abaa9fb851a639a447
14 sg:journal.1136138
15 schema:keywords HII
16 HII regions
17 Herschel observations
18 IR spectral energy distribution
19 IR-intensity distribution
20 PAH content
21 PAHs
22 RCW 120 nebula
23 Spitzer
24 account stochastic heating
25 agreement
26 aromatic hydrocarbons
27 characteristic destruction times
28 chemical‐dynamical model
29 collisions
30 computational results
31 content
32 contribution
33 contribution of collision
34 destruction
35 destruction of dust
36 destruction time
37 distribution
38 dust
39 dust population
40 emission
41 energy distribution
42 evolution
43 field
44 gas particles
45 generation
46 grains
47 graphite grains
48 heating
49 homogeneous PAH content
50 hydrocarbons
51 hydrogen region
52 included—large silicate grains
53 infrared emission
54 infrared radiation
55 intensity distribution
56 ionized hydrogen region
57 macromolecules
58 massive stars
59 means
60 model
61 nebula
62 observations
63 observed IR-intensity distribution
64 particles
65 population
66 radiation
67 radiation field
68 radiative transfer model
69 realistic characteristic destruction times
70 region
71 region HII
72 results
73 ring-like IR-intensity distribution
74 self-consistent chemical-dynamical model
75 silicate grains
76 small grains
77 small graphite grains
78 spectral energy distribution
79 stars
80 stochastic heating
81 time
82 transfer model
83 ultraviolet radiation
84 wavelength
85 schema:name Infrared emission and the destruction of dust in HII regions
86 schema:pagination 573-585
87 schema:productId N0e50829349b945c483f0d6ff2664706b
88 N4f62dfce72b14d6792a24d3fff5ae562
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001172147
90 https://doi.org/10.1134/s1063772913070056
91 schema:sdDatePublished 2022-01-01T18:30
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N889a505643704145a3ae41ecc8093e74
94 schema:url https://doi.org/10.1134/s1063772913070056
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N0e50829349b945c483f0d6ff2664706b schema:name doi
99 schema:value 10.1134/s1063772913070056
100 rdf:type schema:PropertyValue
101 N4f62dfce72b14d6792a24d3fff5ae562 schema:name dimensions_id
102 schema:value pub.1001172147
103 rdf:type schema:PropertyValue
104 N5168d8c4ac304fa8a6a00a55a4dee5ac rdf:first sg:person.012666170751.33
105 rdf:rest Nf7373cb7cd464774a5271785871a7de8
106 N889a505643704145a3ae41ecc8093e74 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N9498d142d5b241ad8d6ae54719f01701 schema:issueNumber 8
109 rdf:type schema:PublicationIssue
110 Nb6c666454081484ab987ed5890c1ad27 rdf:first sg:person.015110315535.16
111 rdf:rest rdf:nil
112 Nbceef092642a42abaa9fb851a639a447 schema:volumeNumber 57
113 rdf:type schema:PublicationVolume
114 Nf7373cb7cd464774a5271785871a7de8 rdf:first sg:person.013607324544.42
115 rdf:rest Nb6c666454081484ab987ed5890c1ad27
116 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
117 schema:name Physical Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
120 schema:name Astronomical and Space Sciences
121 rdf:type schema:DefinedTerm
122 sg:journal.1136138 schema:issn 0004-6299
123 1063-7729
124 schema:name Astronomy Reports
125 schema:publisher Pleiades Publishing
126 rdf:type schema:Periodical
127 sg:person.012666170751.33 schema:affiliation grid-institutes:grid.465335.2
128 schema:familyName Pavlyuchenkov
129 schema:givenName Ya. N.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012666170751.33
131 rdf:type schema:Person
132 sg:person.013607324544.42 schema:affiliation grid-institutes:grid.465335.2
133 schema:familyName Kirsanova
134 schema:givenName M. S.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607324544.42
136 rdf:type schema:Person
137 sg:person.015110315535.16 schema:affiliation grid-institutes:grid.465335.2
138 schema:familyName Wiebe
139 schema:givenName D. S.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110315535.16
141 rdf:type schema:Person
142 sg:pub.10.1134/s106377290907004x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022032051
143 https://doi.org/10.1134/s106377290907004x
144 rdf:type schema:CreativeWork
145 sg:pub.10.1134/s1063772911010057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038285853
146 https://doi.org/10.1134/s1063772911010057
147 rdf:type schema:CreativeWork
148 grid-institutes:grid.465335.2 schema:alternateName Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia
149 schema:name Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...