Ontology type: schema:ScholarlyArticle Open Access: True
2011-01-18
AUTHORSYa. N. Pavlyuchenkov, D. S. Wiebe, A. M. Fateeva, T. S. Vasyunina
ABSTRACTA one-dimensional method for reconstructing the structure of prestellar and protostellar clouds is presented. The method is based on radiative-transfer computations and a comparison of theoretical and observed intensity distributions at both millimeter and infrared wavelengths. The radiative transfer of dust emission is modeled for specified parameters of the density distribution, central star, and external background, and the theoretical distribution of the dust temperature inside the cloud is determined. The intensity distributions at millimeter and IR wavelengths are computed and quantitatively compared with observational data. The best-fit model parameters are determined using a genetic minimization algorithm, which makes it possible to reveal the ranges of parameter degeneracy as well. The method is illustrated by modeling the structure of two infrared dark clouds IRDC-320.27+029 (P2) and IRDC-321.73+005 (P2). The derived density and temperature distributions can be used to model the chemical structure and spectral maps in molecular lines. More... »
PAGES1-12
http://scigraph.springernature.com/pub.10.1134/s1063772911010057
DOIhttp://dx.doi.org/10.1134/s1063772911010057
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1038285853
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Astronomical and Space Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.465335.2",
"name": [
"Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Pavlyuchenkov",
"givenName": "Ya. N.",
"id": "sg:person.012666170751.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012666170751.33"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.465335.2",
"name": [
"Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Wiebe",
"givenName": "D. S.",
"id": "sg:person.015110315535.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110315535.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.465335.2",
"name": [
"Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Fateeva",
"givenName": "A. M.",
"id": "sg:person.015273134113.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273134113.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "International Max-Planck Research School, Heidelberg, Germany",
"id": "http://www.grid.ac/institutes/grid.4372.2",
"name": [
"Max-Planck Institute for Astronomy, D-69117, Heidelberg, Germany",
"International Max-Planck Research School, Heidelberg, Germany"
],
"type": "Organization"
},
"familyName": "Vasyunina",
"givenName": "T. S.",
"id": "sg:person.013020042171.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020042171.90"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/35051509",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043337890",
"https://doi.org/10.1038/35051509"
],
"type": "CreativeWork"
}
],
"datePublished": "2011-01-18",
"datePublishedReg": "2011-01-18",
"description": "A one-dimensional method for reconstructing the structure of prestellar and protostellar clouds is presented. The method is based on radiative-transfer computations and a comparison of theoretical and observed intensity distributions at both millimeter and infrared wavelengths. The radiative transfer of dust emission is modeled for specified parameters of the density distribution, central star, and external background, and the theoretical distribution of the dust temperature inside the cloud is determined. The intensity distributions at millimeter and IR wavelengths are computed and quantitatively compared with observational data. The best-fit model parameters are determined using a genetic minimization algorithm, which makes it possible to reveal the ranges of parameter degeneracy as well. The method is illustrated by modeling the structure of two infrared dark clouds IRDC-320.27+029 (P2) and IRDC-321.73+005 (P2). The derived density and temperature distributions can be used to model the chemical structure and spectral maps in molecular lines.",
"genre": "article",
"id": "sg:pub.10.1134/s1063772911010057",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136138",
"issn": [
"0004-6299",
"1063-7729"
],
"name": "Astronomy Reports",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "55"
}
],
"keywords": [
"protostellar clouds",
"fit model parameters",
"one-dimensional method",
"intensity distribution",
"parameter degeneracies",
"theoretical distributions",
"radiative transfer computations",
"radiative transfer",
"dust temperature",
"minimization algorithm",
"observed intensity distribution",
"model parameters",
"genetic minimization algorithm",
"observational data",
"IR wavelengths",
"external background",
"radiative transfer modeling",
"density distribution",
"central star",
"specified parameters",
"temperature distribution",
"dust emission",
"transfer modeling",
"parameters",
"molecular lines",
"spectral maps",
"degeneracy",
"infrared wavelengths",
"distribution",
"computation",
"stars",
"algorithm",
"modeling",
"structure",
"wavelength",
"cloud",
"millimeters",
"density",
"maps",
"temperature",
"comparison",
"emission",
"range",
"lines",
"transfer",
"data",
"background",
"chemical structure",
"method"
],
"name": "Determining the parameters of massive protostellar clouds via radiative transfer modeling",
"pagination": "1-12",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1038285853"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063772911010057"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063772911010057",
"https://app.dimensions.ai/details/publication/pub.1038285853"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:27",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_551.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063772911010057"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063772911010057'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063772911010057'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063772911010057'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063772911010057'
This table displays all metadata directly associated to this object as RDF triples.
136 TRIPLES
22 PREDICATES
75 URIs
66 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063772911010057 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0201 |
3 | ″ | schema:author | N69861ac7141642ee878cfcf2c1ad7cef |
4 | ″ | schema:citation | sg:pub.10.1038/35051509 |
5 | ″ | schema:datePublished | 2011-01-18 |
6 | ″ | schema:datePublishedReg | 2011-01-18 |
7 | ″ | schema:description | A one-dimensional method for reconstructing the structure of prestellar and protostellar clouds is presented. The method is based on radiative-transfer computations and a comparison of theoretical and observed intensity distributions at both millimeter and infrared wavelengths. The radiative transfer of dust emission is modeled for specified parameters of the density distribution, central star, and external background, and the theoretical distribution of the dust temperature inside the cloud is determined. The intensity distributions at millimeter and IR wavelengths are computed and quantitatively compared with observational data. The best-fit model parameters are determined using a genetic minimization algorithm, which makes it possible to reveal the ranges of parameter degeneracy as well. The method is illustrated by modeling the structure of two infrared dark clouds IRDC-320.27+029 (P2) and IRDC-321.73+005 (P2). The derived density and temperature distributions can be used to model the chemical structure and spectral maps in molecular lines. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N0d0bbbc7ae2b4b88bec66dbc6d1dffab |
12 | ″ | ″ | N80a5d741aca4419e8b574778d4a80fa0 |
13 | ″ | ″ | sg:journal.1136138 |
14 | ″ | schema:keywords | IR wavelengths |
15 | ″ | ″ | algorithm |
16 | ″ | ″ | background |
17 | ″ | ″ | central star |
18 | ″ | ″ | chemical structure |
19 | ″ | ″ | cloud |
20 | ″ | ″ | comparison |
21 | ″ | ″ | computation |
22 | ″ | ″ | data |
23 | ″ | ″ | degeneracy |
24 | ″ | ″ | density |
25 | ″ | ″ | density distribution |
26 | ″ | ″ | distribution |
27 | ″ | ″ | dust emission |
28 | ″ | ″ | dust temperature |
29 | ″ | ″ | emission |
30 | ″ | ″ | external background |
31 | ″ | ″ | fit model parameters |
32 | ″ | ″ | genetic minimization algorithm |
33 | ″ | ″ | infrared wavelengths |
34 | ″ | ″ | intensity distribution |
35 | ″ | ″ | lines |
36 | ″ | ″ | maps |
37 | ″ | ″ | method |
38 | ″ | ″ | millimeters |
39 | ″ | ″ | minimization algorithm |
40 | ″ | ″ | model parameters |
41 | ″ | ″ | modeling |
42 | ″ | ″ | molecular lines |
43 | ″ | ″ | observational data |
44 | ″ | ″ | observed intensity distribution |
45 | ″ | ″ | one-dimensional method |
46 | ″ | ″ | parameter degeneracies |
47 | ″ | ″ | parameters |
48 | ″ | ″ | protostellar clouds |
49 | ″ | ″ | radiative transfer |
50 | ″ | ″ | radiative transfer computations |
51 | ″ | ″ | radiative transfer modeling |
52 | ″ | ″ | range |
53 | ″ | ″ | specified parameters |
54 | ″ | ″ | spectral maps |
55 | ″ | ″ | stars |
56 | ″ | ″ | structure |
57 | ″ | ″ | temperature |
58 | ″ | ″ | temperature distribution |
59 | ″ | ″ | theoretical distributions |
60 | ″ | ″ | transfer |
61 | ″ | ″ | transfer modeling |
62 | ″ | ″ | wavelength |
63 | ″ | schema:name | Determining the parameters of massive protostellar clouds via radiative transfer modeling |
64 | ″ | schema:pagination | 1-12 |
65 | ″ | schema:productId | Nbc7095d3c6d84655b2a620cdf0ed69b8 |
66 | ″ | ″ | Ndb2f9b40dfb744919bb8c53d2928066f |
67 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038285853 |
68 | ″ | ″ | https://doi.org/10.1134/s1063772911010057 |
69 | ″ | schema:sdDatePublished | 2022-05-20T07:27 |
70 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
71 | ″ | schema:sdPublisher | Ne50bac22f2b542d79d9db8ab8f7f0f70 |
72 | ″ | schema:url | https://doi.org/10.1134/s1063772911010057 |
73 | ″ | sgo:license | sg:explorer/license/ |
74 | ″ | sgo:sdDataset | articles |
75 | ″ | rdf:type | schema:ScholarlyArticle |
76 | N0d0bbbc7ae2b4b88bec66dbc6d1dffab | schema:issueNumber | 1 |
77 | ″ | rdf:type | schema:PublicationIssue |
78 | N15be4af1e8764205934fdac8a148da9e | rdf:first | sg:person.015110315535.16 |
79 | ″ | rdf:rest | Ne6a864bb8f50410ab19d587465bae953 |
80 | N381c1657b8364bd2851621b8ababf8e9 | rdf:first | sg:person.013020042171.90 |
81 | ″ | rdf:rest | rdf:nil |
82 | N69861ac7141642ee878cfcf2c1ad7cef | rdf:first | sg:person.012666170751.33 |
83 | ″ | rdf:rest | N15be4af1e8764205934fdac8a148da9e |
84 | N80a5d741aca4419e8b574778d4a80fa0 | schema:volumeNumber | 55 |
85 | ″ | rdf:type | schema:PublicationVolume |
86 | Nbc7095d3c6d84655b2a620cdf0ed69b8 | schema:name | dimensions_id |
87 | ″ | schema:value | pub.1038285853 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | Ndb2f9b40dfb744919bb8c53d2928066f | schema:name | doi |
90 | ″ | schema:value | 10.1134/s1063772911010057 |
91 | ″ | rdf:type | schema:PropertyValue |
92 | Ne50bac22f2b542d79d9db8ab8f7f0f70 | schema:name | Springer Nature - SN SciGraph project |
93 | ″ | rdf:type | schema:Organization |
94 | Ne6a864bb8f50410ab19d587465bae953 | rdf:first | sg:person.015273134113.16 |
95 | ″ | rdf:rest | N381c1657b8364bd2851621b8ababf8e9 |
96 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Physical Sciences |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | anzsrc-for:0201 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Astronomical and Space Sciences |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | sg:journal.1136138 | schema:issn | 0004-6299 |
103 | ″ | ″ | 1063-7729 |
104 | ″ | schema:name | Astronomy Reports |
105 | ″ | schema:publisher | Pleiades Publishing |
106 | ″ | rdf:type | schema:Periodical |
107 | sg:person.012666170751.33 | schema:affiliation | grid-institutes:grid.465335.2 |
108 | ″ | schema:familyName | Pavlyuchenkov |
109 | ″ | schema:givenName | Ya. N. |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012666170751.33 |
111 | ″ | rdf:type | schema:Person |
112 | sg:person.013020042171.90 | schema:affiliation | grid-institutes:grid.4372.2 |
113 | ″ | schema:familyName | Vasyunina |
114 | ″ | schema:givenName | T. S. |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020042171.90 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.015110315535.16 | schema:affiliation | grid-institutes:grid.465335.2 |
118 | ″ | schema:familyName | Wiebe |
119 | ″ | schema:givenName | D. S. |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110315535.16 |
121 | ″ | rdf:type | schema:Person |
122 | sg:person.015273134113.16 | schema:affiliation | grid-institutes:grid.465335.2 |
123 | ″ | schema:familyName | Fateeva |
124 | ″ | schema:givenName | A. M. |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273134113.16 |
126 | ″ | rdf:type | schema:Person |
127 | sg:pub.10.1038/35051509 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1043337890 |
128 | ″ | ″ | https://doi.org/10.1038/35051509 |
129 | ″ | rdf:type | schema:CreativeWork |
130 | grid-institutes:grid.4372.2 | schema:alternateName | International Max-Planck Research School, Heidelberg, Germany |
131 | ″ | schema:name | International Max-Planck Research School, Heidelberg, Germany |
132 | ″ | ″ | Max-Planck Institute for Astronomy, D-69117, Heidelberg, Germany |
133 | ″ | rdf:type | schema:Organization |
134 | grid-institutes:grid.465335.2 | schema:alternateName | Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia |
135 | ″ | schema:name | Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia |
136 | ″ | rdf:type | schema:Organization |