Determining the parameters of massive protostellar clouds via radiative transfer modeling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-01-18

AUTHORS

Ya. N. Pavlyuchenkov, D. S. Wiebe, A. M. Fateeva, T. S. Vasyunina

ABSTRACT

A one-dimensional method for reconstructing the structure of prestellar and protostellar clouds is presented. The method is based on radiative-transfer computations and a comparison of theoretical and observed intensity distributions at both millimeter and infrared wavelengths. The radiative transfer of dust emission is modeled for specified parameters of the density distribution, central star, and external background, and the theoretical distribution of the dust temperature inside the cloud is determined. The intensity distributions at millimeter and IR wavelengths are computed and quantitatively compared with observational data. The best-fit model parameters are determined using a genetic minimization algorithm, which makes it possible to reveal the ranges of parameter degeneracy as well. The method is illustrated by modeling the structure of two infrared dark clouds IRDC-320.27+029 (P2) and IRDC-321.73+005 (P2). The derived density and temperature distributions can be used to model the chemical structure and spectral maps in molecular lines. More... »

PAGES

1-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063772911010057

DOI

http://dx.doi.org/10.1134/s1063772911010057

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038285853


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465335.2", 
          "name": [
            "Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pavlyuchenkov", 
        "givenName": "Ya. N.", 
        "id": "sg:person.012666170751.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012666170751.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465335.2", 
          "name": [
            "Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wiebe", 
        "givenName": "D. S.", 
        "id": "sg:person.015110315535.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110315535.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465335.2", 
          "name": [
            "Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fateeva", 
        "givenName": "A. M.", 
        "id": "sg:person.015273134113.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273134113.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Max-Planck Research School, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Max-Planck Institute for Astronomy, D-69117, Heidelberg, Germany", 
            "International Max-Planck Research School, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasyunina", 
        "givenName": "T. S.", 
        "id": "sg:person.013020042171.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020042171.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35051509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043337890", 
          "https://doi.org/10.1038/35051509"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-01-18", 
    "datePublishedReg": "2011-01-18", 
    "description": "A one-dimensional method for reconstructing the structure of prestellar and protostellar clouds is presented. The method is based on radiative-transfer computations and a comparison of theoretical and observed intensity distributions at both millimeter and infrared wavelengths. The radiative transfer of dust emission is modeled for specified parameters of the density distribution, central star, and external background, and the theoretical distribution of the dust temperature inside the cloud is determined. The intensity distributions at millimeter and IR wavelengths are computed and quantitatively compared with observational data. The best-fit model parameters are determined using a genetic minimization algorithm, which makes it possible to reveal the ranges of parameter degeneracy as well. The method is illustrated by modeling the structure of two infrared dark clouds IRDC-320.27+029 (P2) and IRDC-321.73+005 (P2). The derived density and temperature distributions can be used to model the chemical structure and spectral maps in molecular lines.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063772911010057", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136138", 
        "issn": [
          "0004-6299", 
          "1063-7729"
        ], 
        "name": "Astronomy Reports", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "keywords": [
      "chemical structure", 
      "structure", 
      "infrared wavelengths", 
      "density distribution", 
      "IR wavelengths", 
      "spectral maps", 
      "molecular lines", 
      "one-dimensional method", 
      "method", 
      "wavelength", 
      "transfer", 
      "emission", 
      "temperature", 
      "intensity distribution", 
      "distribution", 
      "parameters", 
      "range", 
      "density", 
      "protostellar clouds", 
      "comparison", 
      "observed intensity distribution", 
      "millimeters", 
      "central star", 
      "external background", 
      "dust temperature", 
      "fit model parameters", 
      "parameter degeneracies", 
      "degeneracy", 
      "radiative transfer modeling", 
      "transfer modeling", 
      "cloud", 
      "radiative-transfer computations", 
      "computation", 
      "radiative transfer", 
      "dust emission", 
      "stars", 
      "theoretical distributions", 
      "observational data", 
      "data", 
      "model parameters", 
      "minimization algorithm", 
      "lines", 
      "modeling", 
      "specified parameters", 
      "background", 
      "temperature distribution", 
      "maps", 
      "algorithm", 
      "genetic minimization algorithm", 
      "massive protostellar clouds"
    ], 
    "name": "Determining the parameters of massive protostellar clouds via radiative transfer modeling", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038285853"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063772911010057"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063772911010057", 
      "https://app.dimensions.ai/details/publication/pub.1038285853"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_529.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063772911010057"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063772911010057'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063772911010057'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063772911010057'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063772911010057'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      22 PREDICATES      76 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063772911010057 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author Nc54f07477d3148998489bb75de94dad3
4 schema:citation sg:pub.10.1038/35051509
5 schema:datePublished 2011-01-18
6 schema:datePublishedReg 2011-01-18
7 schema:description A one-dimensional method for reconstructing the structure of prestellar and protostellar clouds is presented. The method is based on radiative-transfer computations and a comparison of theoretical and observed intensity distributions at both millimeter and infrared wavelengths. The radiative transfer of dust emission is modeled for specified parameters of the density distribution, central star, and external background, and the theoretical distribution of the dust temperature inside the cloud is determined. The intensity distributions at millimeter and IR wavelengths are computed and quantitatively compared with observational data. The best-fit model parameters are determined using a genetic minimization algorithm, which makes it possible to reveal the ranges of parameter degeneracy as well. The method is illustrated by modeling the structure of two infrared dark clouds IRDC-320.27+029 (P2) and IRDC-321.73+005 (P2). The derived density and temperature distributions can be used to model the chemical structure and spectral maps in molecular lines.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N600cbf6069c74549aaffe349c1195539
12 N85ca4ad6c7c8455393b27ebfcac90053
13 sg:journal.1136138
14 schema:keywords IR wavelengths
15 algorithm
16 background
17 central star
18 chemical structure
19 cloud
20 comparison
21 computation
22 data
23 degeneracy
24 density
25 density distribution
26 distribution
27 dust emission
28 dust temperature
29 emission
30 external background
31 fit model parameters
32 genetic minimization algorithm
33 infrared wavelengths
34 intensity distribution
35 lines
36 maps
37 massive protostellar clouds
38 method
39 millimeters
40 minimization algorithm
41 model parameters
42 modeling
43 molecular lines
44 observational data
45 observed intensity distribution
46 one-dimensional method
47 parameter degeneracies
48 parameters
49 protostellar clouds
50 radiative transfer
51 radiative transfer modeling
52 radiative-transfer computations
53 range
54 specified parameters
55 spectral maps
56 stars
57 structure
58 temperature
59 temperature distribution
60 theoretical distributions
61 transfer
62 transfer modeling
63 wavelength
64 schema:name Determining the parameters of massive protostellar clouds via radiative transfer modeling
65 schema:pagination 1-12
66 schema:productId N01c19974978e418d9246e38727429a34
67 Nc170f5d6f9fd4897b61dea1d75cb915e
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038285853
69 https://doi.org/10.1134/s1063772911010057
70 schema:sdDatePublished 2022-01-01T18:24
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N1503c912dcd0459184511609c218039d
73 schema:url https://doi.org/10.1134/s1063772911010057
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N01c19974978e418d9246e38727429a34 schema:name dimensions_id
78 schema:value pub.1038285853
79 rdf:type schema:PropertyValue
80 N0af95926a71d4533b3a3ff326c2235df rdf:first sg:person.013020042171.90
81 rdf:rest rdf:nil
82 N1503c912dcd0459184511609c218039d schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N2f60d52f0a884be2b9736efa17a3a41a rdf:first sg:person.015273134113.16
85 rdf:rest N0af95926a71d4533b3a3ff326c2235df
86 N600cbf6069c74549aaffe349c1195539 schema:volumeNumber 55
87 rdf:type schema:PublicationVolume
88 N85ca4ad6c7c8455393b27ebfcac90053 schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 Nc170f5d6f9fd4897b61dea1d75cb915e schema:name doi
91 schema:value 10.1134/s1063772911010057
92 rdf:type schema:PropertyValue
93 Nc54f07477d3148998489bb75de94dad3 rdf:first sg:person.012666170751.33
94 rdf:rest Nf4fd73124b7e45dabdc3536b1e1dbbe4
95 Nf4fd73124b7e45dabdc3536b1e1dbbe4 rdf:first sg:person.015110315535.16
96 rdf:rest N2f60d52f0a884be2b9736efa17a3a41a
97 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
98 schema:name Physical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
101 schema:name Astronomical and Space Sciences
102 rdf:type schema:DefinedTerm
103 sg:journal.1136138 schema:issn 0004-6299
104 1063-7729
105 schema:name Astronomy Reports
106 schema:publisher Pleiades Publishing
107 rdf:type schema:Periodical
108 sg:person.012666170751.33 schema:affiliation grid-institutes:grid.465335.2
109 schema:familyName Pavlyuchenkov
110 schema:givenName Ya. N.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012666170751.33
112 rdf:type schema:Person
113 sg:person.013020042171.90 schema:affiliation grid-institutes:grid.4372.2
114 schema:familyName Vasyunina
115 schema:givenName T. S.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020042171.90
117 rdf:type schema:Person
118 sg:person.015110315535.16 schema:affiliation grid-institutes:grid.465335.2
119 schema:familyName Wiebe
120 schema:givenName D. S.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110315535.16
122 rdf:type schema:Person
123 sg:person.015273134113.16 schema:affiliation grid-institutes:grid.465335.2
124 schema:familyName Fateeva
125 schema:givenName A. M.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273134113.16
127 rdf:type schema:Person
128 sg:pub.10.1038/35051509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043337890
129 https://doi.org/10.1038/35051509
130 rdf:type schema:CreativeWork
131 grid-institutes:grid.4372.2 schema:alternateName International Max-Planck Research School, Heidelberg, Germany
132 schema:name International Max-Planck Research School, Heidelberg, Germany
133 Max-Planck Institute for Astronomy, D-69117, Heidelberg, Germany
134 rdf:type schema:Organization
135 grid-institutes:grid.465335.2 schema:alternateName Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia
136 schema:name Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...