Modeling the Energy Structure of a GaN p–i–n Junction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

F. I. Manyakhin, L. O. Mokretsova

ABSTRACT

—The second-order differential equation, which includes the density distribution function of a mobile charge in a compensated layer of the GaN diode p–i–n junction is derived. The equation is solved numerically using the MathCad software. The electric field at the interface between the doped and compensated layers is calculated under the assumption of the concentration of electrons diffused into the compensated layer being much higher than the concentration of the immobile compensated impurity ions. Electrons from the heavily doped layer diffuse into the compensated layer and leave positively charged donor impurity ions there. The electric field ε induced between the layers of mobile electrons and ions compensates the diffusion flow by the drift flow. The charged layers of mobile carriers screen the external electric field. Based on the solution of the differential equation, diagrams of the electric field and potential distribution in the GaN p–i–n junction’s space charge region (SCR) are built taking into account the effect of free carriers. It is shown that in the nonexponential portion of the I–V characteristic, the drift field is induced in the compensated layer, which limits the growth of the forward current. More... »

PAGES

619-623

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063739718080073

DOI

http://dx.doi.org/10.1134/s1063739718080073

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112901977


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology MISiS, 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology MISiS, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manyakhin", 
        "givenName": "F. I.", 
        "id": "sg:person.013240127346.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240127346.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology MISiS, 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology MISiS, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mokretsova", 
        "givenName": "L. O.", 
        "id": "sg:person.07705212035.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705212035.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/proc-680-e4.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067951910", 
          "https://doi.org/10.1557/proc-680-e4.2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1385720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045528578", 
          "https://doi.org/10.1134/1.1385720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782610060175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028089909", 
          "https://doi.org/10.1134/s1063782610060175"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Abstract\u2014The second-order differential equation, which includes the density distribution function of a mobile charge in a compensated layer of the GaN diode p\u2013i\u2013n junction is derived. The equation is solved numerically using the MathCad software. The electric field at the interface between the doped and compensated layers is calculated under the assumption of the concentration of electrons diffused into the compensated layer being much higher than the concentration of the immobile compensated impurity ions. Electrons from the heavily doped layer diffuse into the compensated layer and leave positively charged donor impurity ions there. The electric field \u03b5 induced between the layers of mobile electrons and ions compensates the diffusion flow by the drift flow. The charged layers of mobile carriers screen the external electric field. Based on the solution of the differential equation, diagrams of the electric field and potential distribution in the GaN p\u2013i\u2013n junction\u2019s space charge region (SCR) are built taking into account the effect of free carriers. It is shown that in the nonexponential portion of the I\u2013V characteristic, the drift field is induced in the compensated layer, which limits the growth of the forward current.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063739718080073", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136391", 
        "issn": [
          "1063-7397", 
          "1608-3415"
        ], 
        "name": "Russian Microelectronics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "keywords": [
      "space charge region", 
      "compensated layer", 
      "electric field", 
      "junction space charge region", 
      "GaN p", 
      "layer diffuse", 
      "external electric field", 
      "diffusion flow", 
      "forward current", 
      "charge region", 
      "drift flow", 
      "mobile charges", 
      "electric field \u03b5", 
      "layer", 
      "mobile carriers", 
      "Mathcad software", 
      "diode p", 
      "concentration of electrons", 
      "free carriers", 
      "potential distribution", 
      "donor impurity ions", 
      "density distribution function", 
      "flow", 
      "differential equations", 
      "drift field", 
      "equations", 
      "field", 
      "mobile electrons", 
      "interface", 
      "impurity ions", 
      "energy structure", 
      "distribution function", 
      "carriers", 
      "current", 
      "second-order differential equations", 
      "electrons", 
      "junctions", 
      "solution", 
      "ions", 
      "characteristics", 
      "charge", 
      "structure", 
      "concentration", 
      "diagram", 
      "distribution", 
      "software", 
      "account", 
      "effect", 
      "assumption", 
      "region", 
      "growth", 
      "portion", 
      "function", 
      "diffuse", 
      "GaN diode p", 
      "field \u03b5", 
      "nonexponential portion"
    ], 
    "name": "Modeling the Energy Structure of a GaN p\u2013i\u2013n Junction", 
    "pagination": "619-623", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112901977"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063739718080073"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063739718080073", 
      "https://app.dimensions.ai/details/publication/pub.1112901977"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_792.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063739718080073"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080073'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080073'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080073'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080073'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      22 PREDICATES      86 URIs      75 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063739718080073 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N1f6aa6e2eac44d1194c167b3e244c4f7
4 schema:citation sg:pub.10.1134/1.1385720
5 sg:pub.10.1134/s1063782610060175
6 sg:pub.10.1557/proc-680-e4.2
7 schema:datePublished 2018-12
8 schema:datePublishedReg 2018-12-01
9 schema:description Abstract—The second-order differential equation, which includes the density distribution function of a mobile charge in a compensated layer of the GaN diode p–i–n junction is derived. The equation is solved numerically using the MathCad software. The electric field at the interface between the doped and compensated layers is calculated under the assumption of the concentration of electrons diffused into the compensated layer being much higher than the concentration of the immobile compensated impurity ions. Electrons from the heavily doped layer diffuse into the compensated layer and leave positively charged donor impurity ions there. The electric field ε induced between the layers of mobile electrons and ions compensates the diffusion flow by the drift flow. The charged layers of mobile carriers screen the external electric field. Based on the solution of the differential equation, diagrams of the electric field and potential distribution in the GaN p–i–n junction’s space charge region (SCR) are built taking into account the effect of free carriers. It is shown that in the nonexponential portion of the I–V characteristic, the drift field is induced in the compensated layer, which limits the growth of the forward current.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N1c8d3309ca0c420a83d77b9b683efa07
14 N4962630849384001905e06089456901f
15 sg:journal.1136391
16 schema:keywords GaN diode p
17 GaN p
18 Mathcad software
19 account
20 assumption
21 carriers
22 characteristics
23 charge
24 charge region
25 compensated layer
26 concentration
27 concentration of electrons
28 current
29 density distribution function
30 diagram
31 differential equations
32 diffuse
33 diffusion flow
34 diode p
35 distribution
36 distribution function
37 donor impurity ions
38 drift field
39 drift flow
40 effect
41 electric field
42 electric field ε
43 electrons
44 energy structure
45 equations
46 external electric field
47 field
48 field ε
49 flow
50 forward current
51 free carriers
52 function
53 growth
54 impurity ions
55 interface
56 ions
57 junction space charge region
58 junctions
59 layer
60 layer diffuse
61 mobile carriers
62 mobile charges
63 mobile electrons
64 nonexponential portion
65 portion
66 potential distribution
67 region
68 second-order differential equations
69 software
70 solution
71 space charge region
72 structure
73 schema:name Modeling the Energy Structure of a GaN p–i–n Junction
74 schema:pagination 619-623
75 schema:productId N00f79934568c4d73b7847bd03f9f8ddb
76 Ndd62170d2aff45b18568bf33b6d04987
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112901977
78 https://doi.org/10.1134/s1063739718080073
79 schema:sdDatePublished 2021-11-01T18:34
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Nf3dcbba58b244442a4452a4afd6d4fc1
82 schema:url https://doi.org/10.1134/s1063739718080073
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N00f79934568c4d73b7847bd03f9f8ddb schema:name doi
87 schema:value 10.1134/s1063739718080073
88 rdf:type schema:PropertyValue
89 N0812c68a6d344a66973a3210bcba37a0 rdf:first sg:person.07705212035.55
90 rdf:rest rdf:nil
91 N1c8d3309ca0c420a83d77b9b683efa07 schema:issueNumber 8
92 rdf:type schema:PublicationIssue
93 N1f6aa6e2eac44d1194c167b3e244c4f7 rdf:first sg:person.013240127346.07
94 rdf:rest N0812c68a6d344a66973a3210bcba37a0
95 N4962630849384001905e06089456901f schema:volumeNumber 47
96 rdf:type schema:PublicationVolume
97 Ndd62170d2aff45b18568bf33b6d04987 schema:name dimensions_id
98 schema:value pub.1112901977
99 rdf:type schema:PropertyValue
100 Nf3dcbba58b244442a4452a4afd6d4fc1 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
103 schema:name Chemical Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
106 schema:name Physical Chemistry (incl. Structural)
107 rdf:type schema:DefinedTerm
108 sg:journal.1136391 schema:issn 1063-7397
109 1608-3415
110 schema:name Russian Microelectronics
111 schema:publisher Pleiades Publishing
112 rdf:type schema:Periodical
113 sg:person.013240127346.07 schema:affiliation grid-institutes:grid.35043.31
114 schema:familyName Manyakhin
115 schema:givenName F. I.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240127346.07
117 rdf:type schema:Person
118 sg:person.07705212035.55 schema:affiliation grid-institutes:grid.35043.31
119 schema:familyName Mokretsova
120 schema:givenName L. O.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705212035.55
122 rdf:type schema:Person
123 sg:pub.10.1134/1.1385720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045528578
124 https://doi.org/10.1134/1.1385720
125 rdf:type schema:CreativeWork
126 sg:pub.10.1134/s1063782610060175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028089909
127 https://doi.org/10.1134/s1063782610060175
128 rdf:type schema:CreativeWork
129 sg:pub.10.1557/proc-680-e4.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067951910
130 https://doi.org/10.1557/proc-680-e4.2
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.35043.31 schema:alternateName National University of Science and Technology MISiS, 119049, Moscow, Russia
133 schema:name National University of Science and Technology MISiS, 119049, Moscow, Russia
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...