Modeling the Energy Structure of a GaN p–i–n Junction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

F. I. Manyakhin, L. O. Mokretsova

ABSTRACT

The second-order differential equation, which includes the density distribution function of a mobile charge in a compensated layer of the GaN diode p–i–n junction is derived. The equation is solved numerically using the MathCad software. The electric field at the interface between the doped and compensated layers is calculated under the assumption of the concentration of electrons diffused into the compensated layer being much higher than the concentration of the immobile compensated impurity ions. Electrons from the heavily doped layer diffuse into the compensated layer and leave positively charged donor impurity ions there. The electric field ε induced between the layers of mobile electrons and ions compensates the diffusion flow by the drift flow. The charged layers of mobile carriers screen the external electric field. Based on the solution of the differential equation, diagrams of the electric field and potential distribution in the GaN p–i–n junction’s space charge region (SCR) are built taking into account the effect of free carriers. It is shown that in the nonexponential portion of the I–V characteristic, the drift field is induced in the compensated layer, which limits the growth of the forward current. More... »

PAGES

619-623

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063739718080073

DOI

http://dx.doi.org/10.1134/s1063739718080073

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112901977


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology MISiS, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manyakhin", 
        "givenName": "F. I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology MISiS, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mokretsova", 
        "givenName": "L. O.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.microrel.2006.07.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013936712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782610060175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028089909", 
          "https://doi.org/10.1134/s1063782610060175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782610060175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028089909", 
          "https://doi.org/10.1134/s1063782610060175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1385720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045528578", 
          "https://doi.org/10.1134/1.1385720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2008.01.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053012468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1593218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057723808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4894464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058092260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jphot.2013.2276758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061294180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2008.2010263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061335627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/apex.3.122102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063031293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/proc-680-e4.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067951910"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The second-order differential equation, which includes the density distribution function of a mobile charge in a compensated layer of the GaN diode p\u2013i\u2013n junction is derived. The equation is solved numerically using the MathCad software. The electric field at the interface between the doped and compensated layers is calculated under the assumption of the concentration of electrons diffused into the compensated layer being much higher than the concentration of the immobile compensated impurity ions. Electrons from the heavily doped layer diffuse into the compensated layer and leave positively charged donor impurity ions there. The electric field \u03b5 induced between the layers of mobile electrons and ions compensates the diffusion flow by the drift flow. The charged layers of mobile carriers screen the external electric field. Based on the solution of the differential equation, diagrams of the electric field and potential distribution in the GaN p\u2013i\u2013n junction\u2019s space charge region (SCR) are built taking into account the effect of free carriers. It is shown that in the nonexponential portion of the I\u2013V characteristic, the drift field is induced in the compensated layer, which limits the growth of the forward current.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063739718080073", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136391", 
        "issn": [
          "1063-7397", 
          "1608-3415"
        ], 
        "name": "Russian Microelectronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Modeling the Energy Structure of a GaN p\u2013i\u2013n Junction", 
    "pagination": "619-623", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e7cc992de7c90252ad934c65d91218da68ff230af6da2f57d6e344a77d96cdab"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063739718080073"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112901977"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063739718080073", 
      "https://app.dimensions.ai/details/publication/pub.1112901977"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063739718080073"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080073'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080073'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080073'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080073'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063739718080073 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author Nb4777e6080ad4db5b9e162b89b6e5521
4 schema:citation sg:pub.10.1134/1.1385720
5 sg:pub.10.1134/s1063782610060175
6 https://doi.org/10.1016/j.jcrysgro.2008.01.022
7 https://doi.org/10.1016/j.microrel.2006.07.050
8 https://doi.org/10.1063/1.1593218
9 https://doi.org/10.1063/1.4894464
10 https://doi.org/10.1109/jphot.2013.2276758
11 https://doi.org/10.1109/jstqe.2008.2010263
12 https://doi.org/10.1143/apex.3.122102
13 https://doi.org/10.1557/proc-680-e4.2
14 schema:datePublished 2018-12
15 schema:datePublishedReg 2018-12-01
16 schema:description The second-order differential equation, which includes the density distribution function of a mobile charge in a compensated layer of the GaN diode p–i–n junction is derived. The equation is solved numerically using the MathCad software. The electric field at the interface between the doped and compensated layers is calculated under the assumption of the concentration of electrons diffused into the compensated layer being much higher than the concentration of the immobile compensated impurity ions. Electrons from the heavily doped layer diffuse into the compensated layer and leave positively charged donor impurity ions there. The electric field ε induced between the layers of mobile electrons and ions compensates the diffusion flow by the drift flow. The charged layers of mobile carriers screen the external electric field. Based on the solution of the differential equation, diagrams of the electric field and potential distribution in the GaN p–i–n junction’s space charge region (SCR) are built taking into account the effect of free carriers. It is shown that in the nonexponential portion of the I–V characteristic, the drift field is induced in the compensated layer, which limits the growth of the forward current.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nb22cad8bf1ff4fcab3ccf5e044aad92f
21 Nd150a0a5c9af416fa363d776b566dacf
22 sg:journal.1136391
23 schema:name Modeling the Energy Structure of a GaN p–i–n Junction
24 schema:pagination 619-623
25 schema:productId N8d2d43d46d97420aae2016d73c3de5bf
26 Ndbe5f6f9cfd54d7db8396a15eadbf1d4
27 Nf63598e1c70a4d8fa81b0c386475a9c3
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112901977
29 https://doi.org/10.1134/s1063739718080073
30 schema:sdDatePublished 2019-04-11T12:40
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Ne9cf782d25714b2f95f4d6138d7553f8
33 schema:url https://link.springer.com/10.1134%2FS1063739718080073
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N5049486805364a3a9dfe5ce260507bf2 rdf:first Nb8a23e0e99c743849ebdefc172d760fe
38 rdf:rest rdf:nil
39 N8d2d43d46d97420aae2016d73c3de5bf schema:name dimensions_id
40 schema:value pub.1112901977
41 rdf:type schema:PropertyValue
42 N905e723a19324ac4835ad1a12337feee schema:affiliation https://www.grid.ac/institutes/grid.35043.31
43 schema:familyName Manyakhin
44 schema:givenName F. I.
45 rdf:type schema:Person
46 Nb22cad8bf1ff4fcab3ccf5e044aad92f schema:issueNumber 8
47 rdf:type schema:PublicationIssue
48 Nb4777e6080ad4db5b9e162b89b6e5521 rdf:first N905e723a19324ac4835ad1a12337feee
49 rdf:rest N5049486805364a3a9dfe5ce260507bf2
50 Nb8a23e0e99c743849ebdefc172d760fe schema:affiliation https://www.grid.ac/institutes/grid.35043.31
51 schema:familyName Mokretsova
52 schema:givenName L. O.
53 rdf:type schema:Person
54 Nd150a0a5c9af416fa363d776b566dacf schema:volumeNumber 47
55 rdf:type schema:PublicationVolume
56 Ndbe5f6f9cfd54d7db8396a15eadbf1d4 schema:name doi
57 schema:value 10.1134/s1063739718080073
58 rdf:type schema:PropertyValue
59 Ne9cf782d25714b2f95f4d6138d7553f8 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Nf63598e1c70a4d8fa81b0c386475a9c3 schema:name readcube_id
62 schema:value e7cc992de7c90252ad934c65d91218da68ff230af6da2f57d6e344a77d96cdab
63 rdf:type schema:PropertyValue
64 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
65 schema:name Engineering
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
68 schema:name Biomedical Engineering
69 rdf:type schema:DefinedTerm
70 sg:journal.1136391 schema:issn 1063-7397
71 1608-3415
72 schema:name Russian Microelectronics
73 rdf:type schema:Periodical
74 sg:pub.10.1134/1.1385720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045528578
75 https://doi.org/10.1134/1.1385720
76 rdf:type schema:CreativeWork
77 sg:pub.10.1134/s1063782610060175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028089909
78 https://doi.org/10.1134/s1063782610060175
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/j.jcrysgro.2008.01.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053012468
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/j.microrel.2006.07.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013936712
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1063/1.1593218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057723808
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1063/1.4894464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058092260
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1109/jphot.2013.2276758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061294180
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1109/jstqe.2008.2010263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061335627
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1143/apex.3.122102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063031293
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1557/proc-680-e4.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067951910
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.35043.31 schema:alternateName National University of Science and Technology
97 schema:name National University of Science and Technology MISiS, 119049, Moscow, Russia
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...