Electromagnetic and Mechanical Properties of the Nanocomposites of Polyacrylonitrile/Carbon Nanotubes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

L. V. Kozhitov, A. V. Shadrinov, D. G. Muratov, E. Yu. Korovin, A. V. Popkova

ABSTRACT

Films of carbon-polymer nanocomposite polyacrylonitrile/single-wall carbon nanotubes (PAN/SWCNTs) with various filler concentrations varying from 0.5 to 30 wt % are synthesized. It is found that use of fillers as the SWCNTs in a polymer composite based on PAN significantly influences the mechanical properties of the polymer; in particular the tensile strength increases. Studying the electrophysical properties shows that the electric conductivity increases by two orders of magnitude due to the degree of percolation and by 7 orders of magnitude in comparison with pure PAN, on introducing SWCNT fillers ranging from 0.5 to 30 wt %. Thermal analyses of the nanocomposite are carried out and they show that the thermal stability of the samples increases and the weight losses decrease at an increase of the SWCNT concentration. The dielectric capacitivity and the coefficients of reflection, transfer, and absorption in the terahertz range are measured. It is found that the coefficient of reflection nonlinearly depends on the concentration of carbon nanotubes (CNTs). The minimum reflection coefficient of 0.55 per unit values is observed at the concentration of 0.5 wt %, whereas materials with an SWCNT concentration of more than 5 wt % show almost the same reflection coefficient at s sufficiently low transfer coefficient. More... »

PAGES

589-597

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s106373971808005x

DOI

http://dx.doi.org/10.1134/s106373971808005x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112900850


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology MISiS, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozhitov", 
        "givenName": "L. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology MISiS, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shadrinov", 
        "givenName": "A. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "National University of Science and Technology MISiS, Moscow, Russia", 
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muratov", 
        "givenName": "D. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korovin", 
        "givenName": "E. Yu.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tver State University", 
          "id": "https://www.grid.ac/institutes/grid.438242.b", 
          "name": [
            "Tver State University, Tver, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popkova", 
        "givenName": "A. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmmm.2011.06.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001865500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2012.12.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009703620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.progpolymsci.2013.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010291494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2011.09.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021424793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/648324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025041270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/ojcm.2013.32003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033138953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11182-013-9909-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041354594", 
          "https://doi.org/10.1007/s11182-013-9909-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-017-6561-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084027409", 
          "https://doi.org/10.1007/s10854-017-6561-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-017-6561-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084027409", 
          "https://doi.org/10.1007/s10854-017-6561-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Films of carbon-polymer nanocomposite polyacrylonitrile/single-wall carbon nanotubes (PAN/SWCNTs) with various filler concentrations varying from 0.5 to 30 wt % are synthesized. It is found that use of fillers as the SWCNTs in a polymer composite based on PAN significantly influences the mechanical properties of the polymer; in particular the tensile strength increases. Studying the electrophysical properties shows that the electric conductivity increases by two orders of magnitude due to the degree of percolation and by 7 orders of magnitude in comparison with pure PAN, on introducing SWCNT fillers ranging from 0.5 to 30 wt %. Thermal analyses of the nanocomposite are carried out and they show that the thermal stability of the samples increases and the weight losses decrease at an increase of the SWCNT concentration. The dielectric capacitivity and the coefficients of reflection, transfer, and absorption in the terahertz range are measured. It is found that the coefficient of reflection nonlinearly depends on the concentration of carbon nanotubes (CNTs). The minimum reflection coefficient of 0.55 per unit values is observed at the concentration of 0.5 wt %, whereas materials with an SWCNT concentration of more than 5 wt % show almost the same reflection coefficient at s sufficiently low transfer coefficient.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s106373971808005x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136391", 
        "issn": [
          "1063-7397", 
          "1608-3415"
        ], 
        "name": "Russian Microelectronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Electromagnetic and Mechanical Properties of the Nanocomposites of Polyacrylonitrile/Carbon Nanotubes", 
    "pagination": "589-597", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c0462853aad492b44ccc8e87065972b3399e35c370b12d1a63a427f52efa6e74"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s106373971808005x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112900850"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s106373971808005x", 
      "https://app.dimensions.ai/details/publication/pub.1112900850"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70027_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS106373971808005X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s106373971808005x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s106373971808005x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s106373971808005x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s106373971808005x'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s106373971808005x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc8f917fb1b6849b9a6d4a69e07f36dd9
4 schema:citation sg:pub.10.1007/s10854-017-6561-y
5 sg:pub.10.1007/s11182-013-9909-7
6 https://doi.org/10.1016/j.jmmm.2011.06.070
7 https://doi.org/10.1016/j.matlet.2011.09.036
8 https://doi.org/10.1016/j.matlet.2012.12.069
9 https://doi.org/10.1016/j.progpolymsci.2013.08.009
10 https://doi.org/10.1155/2011/648324
11 https://doi.org/10.4236/ojcm.2013.32003
12 schema:datePublished 2018-12
13 schema:datePublishedReg 2018-12-01
14 schema:description Films of carbon-polymer nanocomposite polyacrylonitrile/single-wall carbon nanotubes (PAN/SWCNTs) with various filler concentrations varying from 0.5 to 30 wt % are synthesized. It is found that use of fillers as the SWCNTs in a polymer composite based on PAN significantly influences the mechanical properties of the polymer; in particular the tensile strength increases. Studying the electrophysical properties shows that the electric conductivity increases by two orders of magnitude due to the degree of percolation and by 7 orders of magnitude in comparison with pure PAN, on introducing SWCNT fillers ranging from 0.5 to 30 wt %. Thermal analyses of the nanocomposite are carried out and they show that the thermal stability of the samples increases and the weight losses decrease at an increase of the SWCNT concentration. The dielectric capacitivity and the coefficients of reflection, transfer, and absorption in the terahertz range are measured. It is found that the coefficient of reflection nonlinearly depends on the concentration of carbon nanotubes (CNTs). The minimum reflection coefficient of 0.55 per unit values is observed at the concentration of 0.5 wt %, whereas materials with an SWCNT concentration of more than 5 wt % show almost the same reflection coefficient at s sufficiently low transfer coefficient.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N29351516870f41febce0c59a30f7dc84
19 N65924a376a6548a6bd780f4472d7da11
20 sg:journal.1136391
21 schema:name Electromagnetic and Mechanical Properties of the Nanocomposites of Polyacrylonitrile/Carbon Nanotubes
22 schema:pagination 589-597
23 schema:productId N0b34cd28ac9e4e03bd881e08d93757c3
24 N6830d9fdd83d45b3bb4f1a58c2886137
25 N86d4a1b074b445eb88a7eb584d529958
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112900850
27 https://doi.org/10.1134/s106373971808005x
28 schema:sdDatePublished 2019-04-11T12:35
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nac22eefbf8a542ed89c8f1708011db59
31 schema:url https://link.springer.com/10.1134%2FS106373971808005X
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0b34cd28ac9e4e03bd881e08d93757c3 schema:name readcube_id
36 schema:value c0462853aad492b44ccc8e87065972b3399e35c370b12d1a63a427f52efa6e74
37 rdf:type schema:PropertyValue
38 N210e6ff119804c0e8557553aa6917a27 schema:affiliation https://www.grid.ac/institutes/grid.438242.b
39 schema:familyName Popkova
40 schema:givenName A. V.
41 rdf:type schema:Person
42 N29351516870f41febce0c59a30f7dc84 schema:issueNumber 8
43 rdf:type schema:PublicationIssue
44 N4a9ca23354ef4856a8a557d643b0ec4b schema:affiliation https://www.grid.ac/institutes/grid.35043.31
45 schema:familyName Kozhitov
46 schema:givenName L. V.
47 rdf:type schema:Person
48 N4d9fcf70e35b421d8ff8a60dea8bc5ca rdf:first Nf57d61db87734d77b4d9f28cb5b06d1a
49 rdf:rest Nd73ff8d6fb0b4b599b3cca819ef895dc
50 N6417abb56d7b4d78be28cb3bb3d90e56 schema:affiliation https://www.grid.ac/institutes/grid.35043.31
51 schema:familyName Shadrinov
52 schema:givenName A. V.
53 rdf:type schema:Person
54 N65924a376a6548a6bd780f4472d7da11 schema:volumeNumber 47
55 rdf:type schema:PublicationVolume
56 N6830d9fdd83d45b3bb4f1a58c2886137 schema:name doi
57 schema:value 10.1134/s106373971808005x
58 rdf:type schema:PropertyValue
59 N86d4a1b074b445eb88a7eb584d529958 schema:name dimensions_id
60 schema:value pub.1112900850
61 rdf:type schema:PropertyValue
62 N8bc6d335f5784885a9d2b35bec79027d rdf:first N210e6ff119804c0e8557553aa6917a27
63 rdf:rest rdf:nil
64 N8f00c8386def422d866cd19be7984697 rdf:first N6417abb56d7b4d78be28cb3bb3d90e56
65 rdf:rest N4d9fcf70e35b421d8ff8a60dea8bc5ca
66 Nac22eefbf8a542ed89c8f1708011db59 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nb9c73cff43c440ddb00d3082d9087e09 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
69 schema:familyName Korovin
70 schema:givenName E. Yu.
71 rdf:type schema:Person
72 Nc8f917fb1b6849b9a6d4a69e07f36dd9 rdf:first N4a9ca23354ef4856a8a557d643b0ec4b
73 rdf:rest N8f00c8386def422d866cd19be7984697
74 Nd73ff8d6fb0b4b599b3cca819ef895dc rdf:first Nb9c73cff43c440ddb00d3082d9087e09
75 rdf:rest N8bc6d335f5784885a9d2b35bec79027d
76 Nf57d61db87734d77b4d9f28cb5b06d1a schema:affiliation https://www.grid.ac/institutes/grid.423490.8
77 schema:familyName Muratov
78 schema:givenName D. G.
79 rdf:type schema:Person
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
84 schema:name Materials Engineering
85 rdf:type schema:DefinedTerm
86 sg:journal.1136391 schema:issn 1063-7397
87 1608-3415
88 schema:name Russian Microelectronics
89 rdf:type schema:Periodical
90 sg:pub.10.1007/s10854-017-6561-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084027409
91 https://doi.org/10.1007/s10854-017-6561-y
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s11182-013-9909-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041354594
94 https://doi.org/10.1007/s11182-013-9909-7
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.jmmm.2011.06.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001865500
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.matlet.2011.09.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021424793
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.matlet.2012.12.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009703620
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.progpolymsci.2013.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010291494
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1155/2011/648324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025041270
105 rdf:type schema:CreativeWork
106 https://doi.org/10.4236/ojcm.2013.32003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033138953
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.35043.31 schema:alternateName National University of Science and Technology
109 schema:name National University of Science and Technology MISiS, Moscow, Russia
110 rdf:type schema:Organization
111 https://www.grid.ac/institutes/grid.423490.8 schema:alternateName A.V.Topchiev Institute of Petrochemical Synthesis
112 schema:name National University of Science and Technology MISiS, Moscow, Russia
113 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.438242.b schema:alternateName Tver State University
116 schema:name Tver State University, Tver, Russia
117 rdf:type schema:Organization
118 https://www.grid.ac/institutes/grid.77602.34 schema:alternateName Tomsk State University
119 schema:name Tomsk State University, Tomsk, Russia
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...