Electromagnetic and Mechanical Properties of the Nanocomposites of Polyacrylonitrile/Carbon Nanotubes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

L. V. Kozhitov, A. V. Shadrinov, D. G. Muratov, E. Yu. Korovin, A. V. Popkova

ABSTRACT

Films of carbon-polymer nanocomposite polyacrylonitrile/single-wall carbon nanotubes (PAN/SWCNTs) with various filler concentrations varying from 0.5 to 30 wt % are synthesized. It is found that use of fillers as the SWCNTs in a polymer composite based on PAN significantly influences the mechanical properties of the polymer; in particular the tensile strength increases. Studying the electrophysical properties shows that the electric conductivity increases by two orders of magnitude due to the degree of percolation and by 7 orders of magnitude in comparison with pure PAN, on introducing SWCNT fillers ranging from 0.5 to 30 wt %. Thermal analyses of the nanocomposite are carried out and they show that the thermal stability of the samples increases and the weight losses decrease at an increase of the SWCNT concentration. The dielectric capacitivity and the coefficients of reflection, transfer, and absorption in the terahertz range are measured. It is found that the coefficient of reflection nonlinearly depends on the concentration of carbon nanotubes (CNTs). The minimum reflection coefficient of 0.55 per unit values is observed at the concentration of 0.5 wt %, whereas materials with an SWCNT concentration of more than 5 wt % show almost the same reflection coefficient at s sufficiently low transfer coefficient. More... »

PAGES

589-597

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s106373971808005x

DOI

http://dx.doi.org/10.1134/s106373971808005x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112900850


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology MISiS, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozhitov", 
        "givenName": "L. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology MISiS, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shadrinov", 
        "givenName": "A. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "National University of Science and Technology MISiS, Moscow, Russia", 
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muratov", 
        "givenName": "D. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korovin", 
        "givenName": "E. Yu.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tver State University", 
          "id": "https://www.grid.ac/institutes/grid.438242.b", 
          "name": [
            "Tver State University, Tver, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popkova", 
        "givenName": "A. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmmm.2011.06.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001865500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2012.12.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009703620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.progpolymsci.2013.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010291494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2011.09.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021424793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/648324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025041270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/ojcm.2013.32003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033138953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11182-013-9909-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041354594", 
          "https://doi.org/10.1007/s11182-013-9909-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-017-6561-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084027409", 
          "https://doi.org/10.1007/s10854-017-6561-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-017-6561-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084027409", 
          "https://doi.org/10.1007/s10854-017-6561-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Films of carbon-polymer nanocomposite polyacrylonitrile/single-wall carbon nanotubes (PAN/SWCNTs) with various filler concentrations varying from 0.5 to 30 wt % are synthesized. It is found that use of fillers as the SWCNTs in a polymer composite based on PAN significantly influences the mechanical properties of the polymer; in particular the tensile strength increases. Studying the electrophysical properties shows that the electric conductivity increases by two orders of magnitude due to the degree of percolation and by 7 orders of magnitude in comparison with pure PAN, on introducing SWCNT fillers ranging from 0.5 to 30 wt %. Thermal analyses of the nanocomposite are carried out and they show that the thermal stability of the samples increases and the weight losses decrease at an increase of the SWCNT concentration. The dielectric capacitivity and the coefficients of reflection, transfer, and absorption in the terahertz range are measured. It is found that the coefficient of reflection nonlinearly depends on the concentration of carbon nanotubes (CNTs). The minimum reflection coefficient of 0.55 per unit values is observed at the concentration of 0.5 wt %, whereas materials with an SWCNT concentration of more than 5 wt % show almost the same reflection coefficient at s sufficiently low transfer coefficient.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s106373971808005x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136391", 
        "issn": [
          "1063-7397", 
          "1608-3415"
        ], 
        "name": "Russian Microelectronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Electromagnetic and Mechanical Properties of the Nanocomposites of Polyacrylonitrile/Carbon Nanotubes", 
    "pagination": "589-597", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c0462853aad492b44ccc8e87065972b3399e35c370b12d1a63a427f52efa6e74"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s106373971808005x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112900850"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s106373971808005x", 
      "https://app.dimensions.ai/details/publication/pub.1112900850"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70027_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS106373971808005X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s106373971808005x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s106373971808005x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s106373971808005x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s106373971808005x'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s106373971808005x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nee47dd3f73114f3a8c0a7ff8c3014559
4 schema:citation sg:pub.10.1007/s10854-017-6561-y
5 sg:pub.10.1007/s11182-013-9909-7
6 https://doi.org/10.1016/j.jmmm.2011.06.070
7 https://doi.org/10.1016/j.matlet.2011.09.036
8 https://doi.org/10.1016/j.matlet.2012.12.069
9 https://doi.org/10.1016/j.progpolymsci.2013.08.009
10 https://doi.org/10.1155/2011/648324
11 https://doi.org/10.4236/ojcm.2013.32003
12 schema:datePublished 2018-12
13 schema:datePublishedReg 2018-12-01
14 schema:description Films of carbon-polymer nanocomposite polyacrylonitrile/single-wall carbon nanotubes (PAN/SWCNTs) with various filler concentrations varying from 0.5 to 30 wt % are synthesized. It is found that use of fillers as the SWCNTs in a polymer composite based on PAN significantly influences the mechanical properties of the polymer; in particular the tensile strength increases. Studying the electrophysical properties shows that the electric conductivity increases by two orders of magnitude due to the degree of percolation and by 7 orders of magnitude in comparison with pure PAN, on introducing SWCNT fillers ranging from 0.5 to 30 wt %. Thermal analyses of the nanocomposite are carried out and they show that the thermal stability of the samples increases and the weight losses decrease at an increase of the SWCNT concentration. The dielectric capacitivity and the coefficients of reflection, transfer, and absorption in the terahertz range are measured. It is found that the coefficient of reflection nonlinearly depends on the concentration of carbon nanotubes (CNTs). The minimum reflection coefficient of 0.55 per unit values is observed at the concentration of 0.5 wt %, whereas materials with an SWCNT concentration of more than 5 wt % show almost the same reflection coefficient at s sufficiently low transfer coefficient.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Na0e4c8f29d814093adf556ba2e71be0e
19 Nfd9fb350fc0847589edab1e757acaac1
20 sg:journal.1136391
21 schema:name Electromagnetic and Mechanical Properties of the Nanocomposites of Polyacrylonitrile/Carbon Nanotubes
22 schema:pagination 589-597
23 schema:productId N4596b250dbeb459899b2b87e20d6d18f
24 N495bfeb8b9a348fb8064e57856ea8d98
25 N5c0ff4b8ad2043a8aa91fdee4e6fbcec
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112900850
27 https://doi.org/10.1134/s106373971808005x
28 schema:sdDatePublished 2019-04-11T12:35
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N9d3bfae71e244e8fa9ac69a213ae437f
31 schema:url https://link.springer.com/10.1134%2FS106373971808005X
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N210e9ef76ce044bbbe7b365ee332bac2 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
36 schema:familyName Korovin
37 schema:givenName E. Yu.
38 rdf:type schema:Person
39 N4596b250dbeb459899b2b87e20d6d18f schema:name readcube_id
40 schema:value c0462853aad492b44ccc8e87065972b3399e35c370b12d1a63a427f52efa6e74
41 rdf:type schema:PropertyValue
42 N48a18586b3f04dd9967538ce2a7e278f rdf:first N88be2b9af90e41ab87beb8944d6737ba
43 rdf:rest Nf6ed816558604e08ae818b043d3bce70
44 N495bfeb8b9a348fb8064e57856ea8d98 schema:name dimensions_id
45 schema:value pub.1112900850
46 rdf:type schema:PropertyValue
47 N5c0ff4b8ad2043a8aa91fdee4e6fbcec schema:name doi
48 schema:value 10.1134/s106373971808005x
49 rdf:type schema:PropertyValue
50 N73a440318d9b4e25b4cde7adc404df84 schema:affiliation https://www.grid.ac/institutes/grid.438242.b
51 schema:familyName Popkova
52 schema:givenName A. V.
53 rdf:type schema:Person
54 N8251b0da69044f2db99ee1c58bd6bcdd schema:affiliation https://www.grid.ac/institutes/grid.35043.31
55 schema:familyName Kozhitov
56 schema:givenName L. V.
57 rdf:type schema:Person
58 N88be2b9af90e41ab87beb8944d6737ba schema:affiliation https://www.grid.ac/institutes/grid.423490.8
59 schema:familyName Muratov
60 schema:givenName D. G.
61 rdf:type schema:Person
62 N9d3bfae71e244e8fa9ac69a213ae437f schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Na0e4c8f29d814093adf556ba2e71be0e schema:volumeNumber 47
65 rdf:type schema:PublicationVolume
66 Na963f176d0fc4af39393cea60e05318c rdf:first N73a440318d9b4e25b4cde7adc404df84
67 rdf:rest rdf:nil
68 Nbd1b8688b30b4496bcd4f4176ddc81bf schema:affiliation https://www.grid.ac/institutes/grid.35043.31
69 schema:familyName Shadrinov
70 schema:givenName A. V.
71 rdf:type schema:Person
72 Nee47dd3f73114f3a8c0a7ff8c3014559 rdf:first N8251b0da69044f2db99ee1c58bd6bcdd
73 rdf:rest Nef02dfa694b14def990ff6444abb50b9
74 Nef02dfa694b14def990ff6444abb50b9 rdf:first Nbd1b8688b30b4496bcd4f4176ddc81bf
75 rdf:rest N48a18586b3f04dd9967538ce2a7e278f
76 Nf6ed816558604e08ae818b043d3bce70 rdf:first N210e9ef76ce044bbbe7b365ee332bac2
77 rdf:rest Na963f176d0fc4af39393cea60e05318c
78 Nfd9fb350fc0847589edab1e757acaac1 schema:issueNumber 8
79 rdf:type schema:PublicationIssue
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
84 schema:name Materials Engineering
85 rdf:type schema:DefinedTerm
86 sg:journal.1136391 schema:issn 1063-7397
87 1608-3415
88 schema:name Russian Microelectronics
89 rdf:type schema:Periodical
90 sg:pub.10.1007/s10854-017-6561-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084027409
91 https://doi.org/10.1007/s10854-017-6561-y
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s11182-013-9909-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041354594
94 https://doi.org/10.1007/s11182-013-9909-7
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.jmmm.2011.06.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001865500
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.matlet.2011.09.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021424793
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.matlet.2012.12.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009703620
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.progpolymsci.2013.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010291494
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1155/2011/648324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025041270
105 rdf:type schema:CreativeWork
106 https://doi.org/10.4236/ojcm.2013.32003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033138953
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.35043.31 schema:alternateName National University of Science and Technology
109 schema:name National University of Science and Technology MISiS, Moscow, Russia
110 rdf:type schema:Organization
111 https://www.grid.ac/institutes/grid.423490.8 schema:alternateName A.V.Topchiev Institute of Petrochemical Synthesis
112 schema:name National University of Science and Technology MISiS, Moscow, Russia
113 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.438242.b schema:alternateName Tver State University
116 schema:name Tver State University, Tver, Russia
117 rdf:type schema:Organization
118 https://www.grid.ac/institutes/grid.77602.34 schema:alternateName Tomsk State University
119 schema:name Tomsk State University, Tomsk, Russia
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...