On the Nature of the Effective Surface Charge Transformation on InAs Crystals during Anodic Oxide Layer Growth View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

A. V. Artamonov, V. P. Astakhov, I. B. Warlashov, P. D. Gindin, N. I. Evstafieva, P. V. Mitasov, I. N. Miroshnikova

ABSTRACT

The dynamics of fluorine atoms distribution over the thickness of the grown anodic oxide layers and the effective surface charge on InAs crystals under these layers are investigated. Anodic oxidation is performed in an alkaline electrolyte to which a fluorochemical component in the galvanostatic mode is added at the anode current densities of 0.05 and 0.5 mA cm–2. The layer’s thickness changes by 32–51 nm by setting a final voltage of 15 to 25 V on the electrodes during the growth. The layer’s thickness and refractive index are measured by an ellipsometric technique and the distribution of the thickness of fluorine atoms is measured by photoelectron spectroscopy combined with ion etching. Simultaneously, MIS structures are fabricated from the grown layers and their capacitance–voltage characteristics are calculated to determine the effective surface charge and density of the surface states at different layer thicknesses. The main results of the investigations are that, with regardless of anodic current, density the grown layers are compacted, the fluorine atoms distribution profile shifts toward InAs, and the positive effective surface charge gradually decreases from 3.6 × 1011 to 2.0 × 1011 cm–2 at densities of the surface states of (6–7) × 1011 eV–1 cm–2 in all cases. It is concluded based on comparison of the obtained data with the theoretical concepts on the charge structure of MIS structures that the built-in charge is gradually removed from the interface with InAs during the anodic oxide layer’s growth, which explains the observed decrease in the effective surface charge when the layer’s thickness increases. This result indicates, that the layer’s growth rate is faster than rate of the built-in layer charge shifting toward InAs. More... »

PAGES

624-627

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063739718080036

DOI

http://dx.doi.org/10.1134/s1063739718080036

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112896526


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "OOO Technological Systems for Protective Coatings, 108852, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Artamonov", 
        "givenName": "A. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "AO Moskovskiy Zavod \u201cSapfir\u201d, 117545, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Astakhov", 
        "givenName": "V. P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "National Research University \u201cMoscow Power Engineering Institute\u201d, 111250, Moscow, Russia", 
            "Institute of Nanotechnologies of Microelectronics, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Warlashov", 
        "givenName": "I. B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "AO Moskovskiy Zavod \u201cSapfir\u201d, 117545, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gindin", 
        "givenName": "P. D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "AO Moskovskiy Zavod \u201cSapfir\u201d, 117545, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evstafieva", 
        "givenName": "N. I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Power Engineering Institute", 
          "id": "https://www.grid.ac/institutes/grid.77852.3f", 
          "name": [
            "National Research University \u201cMoscow Power Engineering Institute\u201d, 111250, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitasov", 
        "givenName": "P. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "National Research University \u201cMoscow Power Engineering Institute\u201d, 111250, Moscow, Russia", 
            "Institute of Nanotechnologies of Microelectronics, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miroshnikova", 
        "givenName": "I. N.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063739709020024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001068609", 
          "https://doi.org/10.1134/s1063739709020024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063739709020024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001068609", 
          "https://doi.org/10.1134/s1063739709020024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782614030026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009659512", 
          "https://doi.org/10.1134/s1063782614030026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(82)90161-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027720486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(82)90161-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027720486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(76)90628-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030529367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(76)90628-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030529367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(84)90024-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031105805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(84)90024-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031105805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(82)90297-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031596902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(82)90297-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031596902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782612010083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033652254", 
          "https://doi.org/10.1134/s1063782612010083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782612040239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038607478", 
          "https://doi.org/10.1134/s1063782612040239"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The dynamics of fluorine atoms distribution over the thickness of the grown anodic oxide layers and the effective surface charge on InAs crystals under these layers are investigated. Anodic oxidation is performed in an alkaline electrolyte to which a fluorochemical component in the galvanostatic mode is added at the anode current densities of 0.05 and 0.5 mA cm\u20132. The layer\u2019s thickness changes by 32\u201351 nm by setting a final voltage of 15 to 25 V on the electrodes during the growth. The layer\u2019s thickness and refractive index are measured by an ellipsometric technique and the distribution of the thickness of fluorine atoms is measured by photoelectron spectroscopy combined with ion etching. Simultaneously, MIS structures are fabricated from the grown layers and their capacitance\u2013voltage characteristics are calculated to determine the effective surface charge and density of the surface states at different layer thicknesses. The main results of the investigations are that, with regardless of anodic current, density the grown layers are compacted, the fluorine atoms distribution profile shifts toward InAs, and the positive effective surface charge gradually decreases from 3.6 \u00d7 1011 to 2.0 \u00d7 1011 cm\u20132 at densities of the surface states of (6\u20137) \u00d7 1011 eV\u20131 cm\u20132 in all cases. It is concluded based on comparison of the obtained data with the theoretical concepts on the charge structure of MIS structures that the built-in charge is gradually removed from the interface with InAs during the anodic oxide layer\u2019s growth, which explains the observed decrease in the effective surface charge when the layer\u2019s thickness increases. This result indicates, that the layer\u2019s growth rate is faster than rate of the built-in layer charge shifting toward InAs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063739718080036", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136391", 
        "issn": [
          "1063-7397", 
          "1608-3415"
        ], 
        "name": "Russian Microelectronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "On the Nature of the Effective Surface Charge Transformation on InAs Crystals during Anodic Oxide Layer Growth", 
    "pagination": "624-627", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2ab330d7edc48bf16ead1efbc97c374843588742b3b9469f004eaf5098072adc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063739718080036"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112896526"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063739718080036", 
      "https://app.dimensions.ai/details/publication/pub.1112896526"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70061_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063739718080036"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080036'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080036'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080036'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080036'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063739718080036 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N90d69876c6c448d2ac14d87ccb2500e2
4 schema:citation sg:pub.10.1134/s1063739709020024
5 sg:pub.10.1134/s1063782612010083
6 sg:pub.10.1134/s1063782612040239
7 sg:pub.10.1134/s1063782614030026
8 https://doi.org/10.1016/0040-6090(76)90628-3
9 https://doi.org/10.1016/0040-6090(82)90161-4
10 https://doi.org/10.1016/0040-6090(82)90297-8
11 https://doi.org/10.1016/0040-6090(84)90024-5
12 schema:datePublished 2018-12
13 schema:datePublishedReg 2018-12-01
14 schema:description The dynamics of fluorine atoms distribution over the thickness of the grown anodic oxide layers and the effective surface charge on InAs crystals under these layers are investigated. Anodic oxidation is performed in an alkaline electrolyte to which a fluorochemical component in the galvanostatic mode is added at the anode current densities of 0.05 and 0.5 mA cm–2. The layer’s thickness changes by 32–51 nm by setting a final voltage of 15 to 25 V on the electrodes during the growth. The layer’s thickness and refractive index are measured by an ellipsometric technique and the distribution of the thickness of fluorine atoms is measured by photoelectron spectroscopy combined with ion etching. Simultaneously, MIS structures are fabricated from the grown layers and their capacitance–voltage characteristics are calculated to determine the effective surface charge and density of the surface states at different layer thicknesses. The main results of the investigations are that, with regardless of anodic current, density the grown layers are compacted, the fluorine atoms distribution profile shifts toward InAs, and the positive effective surface charge gradually decreases from 3.6 × 1011 to 2.0 × 1011 cm–2 at densities of the surface states of (6–7) × 1011 eV–1 cm–2 in all cases. It is concluded based on comparison of the obtained data with the theoretical concepts on the charge structure of MIS structures that the built-in charge is gradually removed from the interface with InAs during the anodic oxide layer’s growth, which explains the observed decrease in the effective surface charge when the layer’s thickness increases. This result indicates, that the layer’s growth rate is faster than rate of the built-in layer charge shifting toward InAs.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N3053bf23c0114b29a5acb84274c8bb39
19 Na96e09f9e6ae4b7a993572cec04e1682
20 sg:journal.1136391
21 schema:name On the Nature of the Effective Surface Charge Transformation on InAs Crystals during Anodic Oxide Layer Growth
22 schema:pagination 624-627
23 schema:productId N375f216a232447b9a5d7da1925b0d2b6
24 N5074ac70770442d98e3c3d19112cc7e8
25 N8c636150c76544d5b4bdd824a2764ece
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112896526
27 https://doi.org/10.1134/s1063739718080036
28 schema:sdDatePublished 2019-04-11T12:43
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nd889936ac8ff43199cc57cbc2e992b2a
31 schema:url https://link.springer.com/10.1134%2FS1063739718080036
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0830947447b3448b929dff414f370970 rdf:first N70a38609735e4e349ae859e026d0a693
36 rdf:rest N326e0ada135b461c953008fe547ed3a2
37 N0f59e98fe0b34bb19d6de89cbb696843 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
38 schema:familyName Miroshnikova
39 schema:givenName I. N.
40 rdf:type schema:Person
41 N1c7cd0645998487cac0d2ec92c2bf293 schema:name AO Moskovskiy Zavod “Sapfir”, 117545, Moscow, Russia
42 rdf:type schema:Organization
43 N21253bc4ebd74225b0ff01b60fd70530 schema:name AO Moskovskiy Zavod “Sapfir”, 117545, Moscow, Russia
44 rdf:type schema:Organization
45 N3053bf23c0114b29a5acb84274c8bb39 schema:volumeNumber 47
46 rdf:type schema:PublicationVolume
47 N326e0ada135b461c953008fe547ed3a2 rdf:first Na199e986909c4722ae77a61958939739
48 rdf:rest Nd5644ec2f00d4944987829561da377c4
49 N375f216a232447b9a5d7da1925b0d2b6 schema:name readcube_id
50 schema:value 2ab330d7edc48bf16ead1efbc97c374843588742b3b9469f004eaf5098072adc
51 rdf:type schema:PropertyValue
52 N3950a8b20c2a43d1814541ad0813ea22 rdf:first N4d4f8e733c954d6284fd8ad5869be8b4
53 rdf:rest N0830947447b3448b929dff414f370970
54 N4d4f8e733c954d6284fd8ad5869be8b4 schema:affiliation N21253bc4ebd74225b0ff01b60fd70530
55 schema:familyName Gindin
56 schema:givenName P. D.
57 rdf:type schema:Person
58 N4eaf4eca4adf457e961cc53077939f55 schema:affiliation N6b05fa25d8424223bde76a9c8156a41d
59 schema:familyName Artamonov
60 schema:givenName A. V.
61 rdf:type schema:Person
62 N5074ac70770442d98e3c3d19112cc7e8 schema:name doi
63 schema:value 10.1134/s1063739718080036
64 rdf:type schema:PropertyValue
65 N56cabdfca7664807a6b8f2aaaf654571 rdf:first Nd6cde4fa36824290895f8f7b875f1c9a
66 rdf:rest Nafa28085a750419eaca4182eb840e4f7
67 N6b05fa25d8424223bde76a9c8156a41d schema:name OOO Technological Systems for Protective Coatings, 108852, Moscow, Russia
68 rdf:type schema:Organization
69 N70a38609735e4e349ae859e026d0a693 schema:affiliation Nb95c46e724bd41528444b6289e8d1a07
70 schema:familyName Evstafieva
71 schema:givenName N. I.
72 rdf:type schema:Person
73 N8c636150c76544d5b4bdd824a2764ece schema:name dimensions_id
74 schema:value pub.1112896526
75 rdf:type schema:PropertyValue
76 N90d69876c6c448d2ac14d87ccb2500e2 rdf:first N4eaf4eca4adf457e961cc53077939f55
77 rdf:rest N56cabdfca7664807a6b8f2aaaf654571
78 N94471583669441c891e723c079f93362 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
79 schema:familyName Warlashov
80 schema:givenName I. B.
81 rdf:type schema:Person
82 Na199e986909c4722ae77a61958939739 schema:affiliation https://www.grid.ac/institutes/grid.77852.3f
83 schema:familyName Mitasov
84 schema:givenName P. V.
85 rdf:type schema:Person
86 Na96e09f9e6ae4b7a993572cec04e1682 schema:issueNumber 8
87 rdf:type schema:PublicationIssue
88 Nafa28085a750419eaca4182eb840e4f7 rdf:first N94471583669441c891e723c079f93362
89 rdf:rest N3950a8b20c2a43d1814541ad0813ea22
90 Nb95c46e724bd41528444b6289e8d1a07 schema:name AO Moskovskiy Zavod “Sapfir”, 117545, Moscow, Russia
91 rdf:type schema:Organization
92 Nd5644ec2f00d4944987829561da377c4 rdf:first N0f59e98fe0b34bb19d6de89cbb696843
93 rdf:rest rdf:nil
94 Nd6cde4fa36824290895f8f7b875f1c9a schema:affiliation N1c7cd0645998487cac0d2ec92c2bf293
95 schema:familyName Astakhov
96 schema:givenName V. P.
97 rdf:type schema:Person
98 Nd889936ac8ff43199cc57cbc2e992b2a schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
101 schema:name Chemical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
104 schema:name Physical Chemistry (incl. Structural)
105 rdf:type schema:DefinedTerm
106 sg:journal.1136391 schema:issn 1063-7397
107 1608-3415
108 schema:name Russian Microelectronics
109 rdf:type schema:Periodical
110 sg:pub.10.1134/s1063739709020024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001068609
111 https://doi.org/10.1134/s1063739709020024
112 rdf:type schema:CreativeWork
113 sg:pub.10.1134/s1063782612010083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033652254
114 https://doi.org/10.1134/s1063782612010083
115 rdf:type schema:CreativeWork
116 sg:pub.10.1134/s1063782612040239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038607478
117 https://doi.org/10.1134/s1063782612040239
118 rdf:type schema:CreativeWork
119 sg:pub.10.1134/s1063782614030026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009659512
120 https://doi.org/10.1134/s1063782614030026
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0040-6090(76)90628-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030529367
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0040-6090(82)90161-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027720486
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0040-6090(82)90297-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031596902
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0040-6090(84)90024-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031105805
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
131 schema:name Institute of Nanotechnologies of Microelectronics, Russian Academy of Sciences, 119991, Moscow, Russia
132 National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.77852.3f schema:alternateName Moscow Power Engineering Institute
135 schema:name National Research University “Moscow Power Engineering Institute”, 111250, Moscow, Russia
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...