Optimization Problems of Nanosized Semiconductor Heterostructures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

K. K. Abgaryan

ABSTRACT

A new approach is presented that allows solving optimization problems of nanosized semiconductor heterostructures. We have formulated and solved the problem of determining the optimal doping of a barrier layer consisting of a number of sublayers, which provides a preset concentration of electrons in the conduction channel of semiconductor heterostructures. To solve the problem, effective optimization algorithms based on gradient methods are developed. As an example, an Al0.25GaN/GaN heterostructure with a total barrier layer thickness of 30 nm is considered. The results obtained in the numerical experiment are consistent with the modern trend towards the transition from a homogeneous doping profile to a planar δ-doping in field-effect transistor manufacturing technologies. The developed technique of mathematical simulation and optimization can be used in field-effect transistor manufacturing technologies. The approaches presented in the work create the conditions for the automated design of such structures. More... »

PAGES

583-588

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063739718080024

DOI

http://dx.doi.org/10.1134/s1063739718080024

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112898431


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dorodnitsyn Computing Center, Federal Research Center Informatics and Management,\nRussian Academy of Sciences, 119333, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Dorodnitsyn Computing Center, Federal Research Center Informatics and Management,\nRussian Academy of Sciences, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abgaryan", 
        "givenName": "K. K.", 
        "id": "sg:person.010114525753.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010114525753.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0965542516010048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026106725", 
          "https://doi.org/10.1134/s0965542516010048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782613010181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044444960", 
          "https://doi.org/10.1134/s1063782613010181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782614050121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046958467", 
          "https://doi.org/10.1134/s1063782614050121"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "A new approach is presented that allows solving optimization problems of nanosized semiconductor heterostructures. We have formulated and solved the problem of determining the optimal doping of a barrier layer consisting of a number of sublayers, which provides a preset concentration of electrons in the conduction channel of semiconductor heterostructures. To solve the problem, effective optimization algorithms based on gradient methods are developed. As an example, an Al0.25GaN/GaN heterostructure with a total barrier layer thickness of 30 nm is considered. The results obtained in the numerical experiment are consistent with the modern trend towards the transition from a homogeneous doping profile to a planar \u03b4-doping in field-effect transistor manufacturing technologies. The developed technique of mathematical simulation and optimization can be used in field-effect transistor manufacturing technologies. The approaches presented in the work create the conditions for the automated design of such structures.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063739718080024", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6742768", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136391", 
        "issn": [
          "1063-7397", 
          "1608-3415"
        ], 
        "name": "Russian Microelectronics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "keywords": [
      "optimization problem", 
      "effective optimization algorithm", 
      "manufacturing technology", 
      "homogeneous doping profile", 
      "semiconductor heterostructures", 
      "optimization algorithm", 
      "mathematical simulation", 
      "gradient method", 
      "numerical experiments", 
      "barrier layer thickness", 
      "barrier layer", 
      "number of sublayers", 
      "layer thickness", 
      "doping profile", 
      "problem", 
      "GaN heterostructure", 
      "preset concentrations", 
      "heterostructures", 
      "conduction channels", 
      "such structures", 
      "new approach", 
      "optimization", 
      "modern trends", 
      "doping", 
      "algorithm", 
      "sublayer", 
      "approach", 
      "technology", 
      "layer", 
      "simulations", 
      "thickness", 
      "optimal doping", 
      "design", 
      "technique", 
      "structure", 
      "conditions", 
      "number", 
      "experiments", 
      "work", 
      "method", 
      "channels", 
      "electrons", 
      "results", 
      "profile", 
      "concentration", 
      "transition", 
      "example", 
      "trends", 
      "total barrier layer thickness", 
      "planar \u03b4", 
      "field-effect transistor manufacturing technologies", 
      "transistor manufacturing technologies", 
      "Nanosized Semiconductor Heterostructures"
    ], 
    "name": "Optimization Problems of Nanosized Semiconductor Heterostructures", 
    "pagination": "583-588", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112898431"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063739718080024"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063739718080024", 
      "https://app.dimensions.ai/details/publication/pub.1112898431"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_758.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063739718080024"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080024'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080024'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080024'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063739718080024'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      22 PREDICATES      82 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063739718080024 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N4e713337d4d6490bab33314f07042a55
4 schema:citation sg:pub.10.1134/s0965542516010048
5 sg:pub.10.1134/s1063782613010181
6 sg:pub.10.1134/s1063782614050121
7 schema:datePublished 2018-12
8 schema:datePublishedReg 2018-12-01
9 schema:description A new approach is presented that allows solving optimization problems of nanosized semiconductor heterostructures. We have formulated and solved the problem of determining the optimal doping of a barrier layer consisting of a number of sublayers, which provides a preset concentration of electrons in the conduction channel of semiconductor heterostructures. To solve the problem, effective optimization algorithms based on gradient methods are developed. As an example, an Al0.25GaN/GaN heterostructure with a total barrier layer thickness of 30 nm is considered. The results obtained in the numerical experiment are consistent with the modern trend towards the transition from a homogeneous doping profile to a planar δ-doping in field-effect transistor manufacturing technologies. The developed technique of mathematical simulation and optimization can be used in field-effect transistor manufacturing technologies. The approaches presented in the work create the conditions for the automated design of such structures.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N52b0f33fec304664b4f676bd23448da4
14 N860371eff7134402ae8c18f0808321a8
15 sg:journal.1136391
16 schema:keywords GaN heterostructure
17 Nanosized Semiconductor Heterostructures
18 algorithm
19 approach
20 barrier layer
21 barrier layer thickness
22 channels
23 concentration
24 conditions
25 conduction channels
26 design
27 doping
28 doping profile
29 effective optimization algorithm
30 electrons
31 example
32 experiments
33 field-effect transistor manufacturing technologies
34 gradient method
35 heterostructures
36 homogeneous doping profile
37 layer
38 layer thickness
39 manufacturing technology
40 mathematical simulation
41 method
42 modern trends
43 new approach
44 number
45 number of sublayers
46 numerical experiments
47 optimal doping
48 optimization
49 optimization algorithm
50 optimization problem
51 planar δ
52 preset concentrations
53 problem
54 profile
55 results
56 semiconductor heterostructures
57 simulations
58 structure
59 sublayer
60 such structures
61 technique
62 technology
63 thickness
64 total barrier layer thickness
65 transistor manufacturing technologies
66 transition
67 trends
68 work
69 schema:name Optimization Problems of Nanosized Semiconductor Heterostructures
70 schema:pagination 583-588
71 schema:productId N247db9802e564c2eb7785e1cf175552c
72 N828724ed712a44e094d6c30d011a21ee
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112898431
74 https://doi.org/10.1134/s1063739718080024
75 schema:sdDatePublished 2021-12-01T19:41
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Nb8b9efd99b4e4054bb0517d96d1b64ac
78 schema:url https://doi.org/10.1134/s1063739718080024
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N247db9802e564c2eb7785e1cf175552c schema:name doi
83 schema:value 10.1134/s1063739718080024
84 rdf:type schema:PropertyValue
85 N4e713337d4d6490bab33314f07042a55 rdf:first sg:person.010114525753.47
86 rdf:rest rdf:nil
87 N52b0f33fec304664b4f676bd23448da4 schema:issueNumber 8
88 rdf:type schema:PublicationIssue
89 N828724ed712a44e094d6c30d011a21ee schema:name dimensions_id
90 schema:value pub.1112898431
91 rdf:type schema:PropertyValue
92 N860371eff7134402ae8c18f0808321a8 schema:volumeNumber 47
93 rdf:type schema:PublicationVolume
94 Nb8b9efd99b4e4054bb0517d96d1b64ac schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mathematical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
100 schema:name Numerical and Computational Mathematics
101 rdf:type schema:DefinedTerm
102 sg:grant.6742768 http://pending.schema.org/fundedItem sg:pub.10.1134/s1063739718080024
103 rdf:type schema:MonetaryGrant
104 sg:journal.1136391 schema:issn 1063-7397
105 1608-3415
106 schema:name Russian Microelectronics
107 schema:publisher Pleiades Publishing
108 rdf:type schema:Periodical
109 sg:person.010114525753.47 schema:affiliation grid-institutes:grid.4886.2
110 schema:familyName Abgaryan
111 schema:givenName K. K.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010114525753.47
113 rdf:type schema:Person
114 sg:pub.10.1134/s0965542516010048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026106725
115 https://doi.org/10.1134/s0965542516010048
116 rdf:type schema:CreativeWork
117 sg:pub.10.1134/s1063782613010181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044444960
118 https://doi.org/10.1134/s1063782613010181
119 rdf:type schema:CreativeWork
120 sg:pub.10.1134/s1063782614050121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046958467
121 https://doi.org/10.1134/s1063782614050121
122 rdf:type schema:CreativeWork
123 grid-institutes:grid.4886.2 schema:alternateName Dorodnitsyn Computing Center, Federal Research Center Informatics and Management, Russian Academy of Sciences, 119333, Moscow, Russia
124 schema:name Dorodnitsyn Computing Center, Federal Research Center Informatics and Management, Russian Academy of Sciences, 119333, Moscow, Russia
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...