Ontology type: schema:ScholarlyArticle
2016-07-14
AUTHORSV. M. Mordvintsev, V. V. Naumov, S. G. Simakin
ABSTRACTUsing secondary ion mass spectrometry, we investigate the oxidation of titanium nitride films fabricated by reactive magnetron sputtering under specific conditions of burning plasma in the argon and oxygen mixture in a vacuum chamber of a magnetron sputtering facility at annealing temperatures ranging from 350 to 440°С and times ranging from 2 to 11 min. It is shown that the oxidation is activated by the plasma, while thermal activation plays a secondary role. The oxide layer consists of the TiO2 layer and (3–5)-nm-thick intermediate layer between it and the bulk of titanium nitride, which is homogeneous over the sample surface and enriched with oxygen-containing complexes. The titanium dioxide layer thickness lies within 2–3.5 nm and depends on the annealing conditions. The effect of different factors on the layer thicknesses is investigated. The expression is obtained that satisfactorily describes the dependence of the TiO2 layer thickness on annealing temperature and time. More... »
PAGES242-255
http://scigraph.springernature.com/pub.10.1134/s1063739716040065
DOIhttp://dx.doi.org/10.1134/s1063739716040065
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1038852470
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Physics and Technology, Yaroslavl\u2019 Branch, Russian Academy of Sciences, 150007, Yaroslavl\u2019, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute of Physics and Technology, Yaroslavl\u2019 Branch, Russian Academy of Sciences, 150007, Yaroslavl\u2019, Russia"
],
"type": "Organization"
},
"familyName": "Mordvintsev",
"givenName": "V. M.",
"id": "sg:person.016611034467.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016611034467.82"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Physics and Technology, Yaroslavl\u2019 Branch, Russian Academy of Sciences, 150007, Yaroslavl\u2019, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute of Physics and Technology, Yaroslavl\u2019 Branch, Russian Academy of Sciences, 150007, Yaroslavl\u2019, Russia"
],
"type": "Organization"
},
"familyName": "Naumov",
"givenName": "V. V.",
"id": "sg:person.010207276273.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010207276273.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Physics and Technology, Yaroslavl\u2019 Branch, Russian Academy of Sciences, 150007, Yaroslavl\u2019, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute of Physics and Technology, Yaroslavl\u2019 Branch, Russian Academy of Sciences, 150007, Yaroslavl\u2019, Russia"
],
"type": "Organization"
},
"familyName": "Simakin",
"givenName": "S. G.",
"id": "sg:person.014255337761.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014255337761.03"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1134/s1063739713010034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050721590",
"https://doi.org/10.1134/s1063739713010034"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1995078009010133",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048302741",
"https://doi.org/10.1134/s1995078009010133"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-07-14",
"datePublishedReg": "2016-07-14",
"description": "Using secondary ion mass spectrometry, we investigate the oxidation of titanium nitride films fabricated by reactive magnetron sputtering under specific conditions of burning plasma in the argon and oxygen mixture in a vacuum chamber of a magnetron sputtering facility at annealing temperatures ranging from 350 to 440\u00b0\u0421 and times ranging from 2 to 11 min. It is shown that the oxidation is activated by the plasma, while thermal activation plays a secondary role. The oxide layer consists of the TiO2 layer and (3\u20135)-nm-thick intermediate layer between it and the bulk of titanium nitride, which is homogeneous over the sample surface and enriched with oxygen-containing complexes. The titanium dioxide layer thickness lies within 2\u20133.5 nm and depends on the annealing conditions. The effect of different factors on the layer thicknesses is investigated. The expression is obtained that satisfactorily describes the dependence of the TiO2 layer thickness on annealing temperature and time.",
"genre": "article",
"id": "sg:pub.10.1134/s1063739716040065",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136391",
"issn": [
"1063-7397",
"1608-3415"
],
"name": "Russian Microelectronics",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "45"
}
],
"keywords": [
"layer thickness",
"titanium nitride films",
"TiO2 layer thickness",
"thick intermediate layer",
"titanium nitride surface",
"oxide layer",
"sputtering facility",
"titanium nitride",
"oxide films",
"reactive magnetron",
"TiO2 layer",
"nitride films",
"annealing conditions",
"nitride surface",
"secondary ion mass spectrometry study",
"sample surface",
"secondary ion mass spectrometry",
"vacuum chamber",
"intermediate layer",
"oxygen-containing complexes",
"ion mass spectrometry",
"thermal activation",
"thickness",
"films",
"layer",
"oxygen mixture",
"temperature",
"surface",
"magnetron",
"nitride",
"argon",
"oxidation",
"conditions",
"specific conditions",
"bulk",
"chamber",
"mixture",
"plasma",
"different factors",
"facilities",
"time",
"dependence",
"mass spectrometry studies",
"secondary role",
"spectrometry studies",
"formation",
"effect",
"mass spectrometry",
"min",
"study",
"spectrometry",
"factors",
"complexes",
"role",
"activation",
"expression"
],
"name": "Secondary ion mass spectrometry study of the formation of a nanometer oxide film on a titanium nitride surface",
"pagination": "242-255",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1038852470"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063739716040065"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063739716040065",
"https://app.dimensions.ai/details/publication/pub.1038852470"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:16",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_700.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063739716040065"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063739716040065'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063739716040065'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063739716040065'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063739716040065'
This table displays all metadata directly associated to this object as RDF triples.
144 TRIPLES
22 PREDICATES
85 URIs
73 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063739716040065 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | ″ | anzsrc-for:09 |
4 | ″ | ″ | anzsrc-for:0912 |
5 | ″ | schema:author | Ne2710ccc365b4710b1a19222f774ec30 |
6 | ″ | schema:citation | sg:pub.10.1134/s1063739713010034 |
7 | ″ | ″ | sg:pub.10.1134/s1995078009010133 |
8 | ″ | schema:datePublished | 2016-07-14 |
9 | ″ | schema:datePublishedReg | 2016-07-14 |
10 | ″ | schema:description | Using secondary ion mass spectrometry, we investigate the oxidation of titanium nitride films fabricated by reactive magnetron sputtering under specific conditions of burning plasma in the argon and oxygen mixture in a vacuum chamber of a magnetron sputtering facility at annealing temperatures ranging from 350 to 440°С and times ranging from 2 to 11 min. It is shown that the oxidation is activated by the plasma, while thermal activation plays a secondary role. The oxide layer consists of the TiO2 layer and (3–5)-nm-thick intermediate layer between it and the bulk of titanium nitride, which is homogeneous over the sample surface and enriched with oxygen-containing complexes. The titanium dioxide layer thickness lies within 2–3.5 nm and depends on the annealing conditions. The effect of different factors on the layer thicknesses is investigated. The expression is obtained that satisfactorily describes the dependence of the TiO2 layer thickness on annealing temperature and time. |
11 | ″ | schema:genre | article |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | Nf49f71463e1044c6bb30091f9fc17491 |
15 | ″ | ″ | Nf7bacf6843ae465b9af64e8ab27e5381 |
16 | ″ | ″ | sg:journal.1136391 |
17 | ″ | schema:keywords | TiO2 layer |
18 | ″ | ″ | TiO2 layer thickness |
19 | ″ | ″ | activation |
20 | ″ | ″ | annealing conditions |
21 | ″ | ″ | argon |
22 | ″ | ″ | bulk |
23 | ″ | ″ | chamber |
24 | ″ | ″ | complexes |
25 | ″ | ″ | conditions |
26 | ″ | ″ | dependence |
27 | ″ | ″ | different factors |
28 | ″ | ″ | effect |
29 | ″ | ″ | expression |
30 | ″ | ″ | facilities |
31 | ″ | ″ | factors |
32 | ″ | ″ | films |
33 | ″ | ″ | formation |
34 | ″ | ″ | intermediate layer |
35 | ″ | ″ | ion mass spectrometry |
36 | ″ | ″ | layer |
37 | ″ | ″ | layer thickness |
38 | ″ | ″ | magnetron |
39 | ″ | ″ | mass spectrometry |
40 | ″ | ″ | mass spectrometry studies |
41 | ″ | ″ | min |
42 | ″ | ″ | mixture |
43 | ″ | ″ | nitride |
44 | ″ | ″ | nitride films |
45 | ″ | ″ | nitride surface |
46 | ″ | ″ | oxidation |
47 | ″ | ″ | oxide films |
48 | ″ | ″ | oxide layer |
49 | ″ | ″ | oxygen mixture |
50 | ″ | ″ | oxygen-containing complexes |
51 | ″ | ″ | plasma |
52 | ″ | ″ | reactive magnetron |
53 | ″ | ″ | role |
54 | ″ | ″ | sample surface |
55 | ″ | ″ | secondary ion mass spectrometry |
56 | ″ | ″ | secondary ion mass spectrometry study |
57 | ″ | ″ | secondary role |
58 | ″ | ″ | specific conditions |
59 | ″ | ″ | spectrometry |
60 | ″ | ″ | spectrometry studies |
61 | ″ | ″ | sputtering facility |
62 | ″ | ″ | study |
63 | ″ | ″ | surface |
64 | ″ | ″ | temperature |
65 | ″ | ″ | thermal activation |
66 | ″ | ″ | thick intermediate layer |
67 | ″ | ″ | thickness |
68 | ″ | ″ | time |
69 | ″ | ″ | titanium nitride |
70 | ″ | ″ | titanium nitride films |
71 | ″ | ″ | titanium nitride surface |
72 | ″ | ″ | vacuum chamber |
73 | ″ | schema:name | Secondary ion mass spectrometry study of the formation of a nanometer oxide film on a titanium nitride surface |
74 | ″ | schema:pagination | 242-255 |
75 | ″ | schema:productId | N23152f0fdf8b448eb8e2bcf4fffc0fef |
76 | ″ | ″ | N60b324e09f104e2b95095d03213a8b3c |
77 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038852470 |
78 | ″ | ″ | https://doi.org/10.1134/s1063739716040065 |
79 | ″ | schema:sdDatePublished | 2022-05-10T10:16 |
80 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
81 | ″ | schema:sdPublisher | N1b33ac55ed03466f851299c812458a8e |
82 | ″ | schema:url | https://doi.org/10.1134/s1063739716040065 |
83 | ″ | sgo:license | sg:explorer/license/ |
84 | ″ | sgo:sdDataset | articles |
85 | ″ | rdf:type | schema:ScholarlyArticle |
86 | N1b33ac55ed03466f851299c812458a8e | schema:name | Springer Nature - SN SciGraph project |
87 | ″ | rdf:type | schema:Organization |
88 | N23152f0fdf8b448eb8e2bcf4fffc0fef | schema:name | doi |
89 | ″ | schema:value | 10.1134/s1063739716040065 |
90 | ″ | rdf:type | schema:PropertyValue |
91 | N60b324e09f104e2b95095d03213a8b3c | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1038852470 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | Ne20fe62efc534117bcbb58aa8537cec9 | rdf:first | sg:person.010207276273.43 |
95 | ″ | rdf:rest | Nefc088082e2f47398168d7f2833182dc |
96 | Ne2710ccc365b4710b1a19222f774ec30 | rdf:first | sg:person.016611034467.82 |
97 | ″ | rdf:rest | Ne20fe62efc534117bcbb58aa8537cec9 |
98 | Nefc088082e2f47398168d7f2833182dc | rdf:first | sg:person.014255337761.03 |
99 | ″ | rdf:rest | rdf:nil |
100 | Nf49f71463e1044c6bb30091f9fc17491 | schema:volumeNumber | 45 |
101 | ″ | rdf:type | schema:PublicationVolume |
102 | Nf7bacf6843ae465b9af64e8ab27e5381 | schema:issueNumber | 4 |
103 | ″ | rdf:type | schema:PublicationIssue |
104 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Chemical Sciences |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Physical Chemistry (incl. Structural) |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Engineering |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Materials Engineering |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | sg:journal.1136391 | schema:issn | 1063-7397 |
117 | ″ | ″ | 1608-3415 |
118 | ″ | schema:name | Russian Microelectronics |
119 | ″ | schema:publisher | Pleiades Publishing |
120 | ″ | rdf:type | schema:Periodical |
121 | sg:person.010207276273.43 | schema:affiliation | grid-institutes:None |
122 | ″ | schema:familyName | Naumov |
123 | ″ | schema:givenName | V. V. |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010207276273.43 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.014255337761.03 | schema:affiliation | grid-institutes:None |
127 | ″ | schema:familyName | Simakin |
128 | ″ | schema:givenName | S. G. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014255337761.03 |
130 | ″ | rdf:type | schema:Person |
131 | sg:person.016611034467.82 | schema:affiliation | grid-institutes:None |
132 | ″ | schema:familyName | Mordvintsev |
133 | ″ | schema:givenName | V. M. |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016611034467.82 |
135 | ″ | rdf:type | schema:Person |
136 | sg:pub.10.1134/s1063739713010034 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050721590 |
137 | ″ | ″ | https://doi.org/10.1134/s1063739713010034 |
138 | ″ | rdf:type | schema:CreativeWork |
139 | sg:pub.10.1134/s1995078009010133 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048302741 |
140 | ″ | ″ | https://doi.org/10.1134/s1995078009010133 |
141 | ″ | rdf:type | schema:CreativeWork |
142 | grid-institutes:None | schema:alternateName | Institute of Physics and Technology, Yaroslavl’ Branch, Russian Academy of Sciences, 150007, Yaroslavl’, Russia |
143 | ″ | schema:name | Institute of Physics and Technology, Yaroslavl’ Branch, Russian Academy of Sciences, 150007, Yaroslavl’, Russia |
144 | ″ | rdf:type | schema:Organization |