Dynamics of the Species Structure of Testate Amoeba Assemblages in a Waterbody-to-Mire Succession in the Holocene: A Case Study of ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-12-17

AUTHORS

A. N. Tsyganov, A. A. Komarov, N. G. Mazei, T. V. Borisova, E. Yu. Novenko, Yu. A. Mazei

ABSTRACT

Testate amoebae are widely used in palaeoecological studies as indicators (proxies) of environmental conditions in mires and freshwater ecosystems. The goal of this work was to identify patterns in the dynamics of the species composition of testate amoeba assemblages during a “waterbody–mire” succession. This study was performed using multiproxy analysis of the deposits in Mochulya Bog, Kaluga oblast, European Russia. To explain changes in the species composition of testate amoebae, we used data on the plant macrofossil composition, peat humification, and the loss on ignition, together with the results of radiocarbon dating and pollen analysis. The deposit was formed by the sediments of the waterbody, with rich fen and poor fen. The age at the base of the deposits was 4100 cal. yr. BP. Changes in the species composition of testate amoeba assemblages were largely determined by local vegetation, especially Sphagnum mosses, which significantly transform the environment. The transformation of the waterbody into a rich fen may have most likely occurred as a result of climatic (allogeneic) factors: short-term drying and wildfires that might have led to the overgrowth of the shore. The transformation of the rich fen to a poor fen could have been related to the effects of both autogenic (accumulation of the deposits) and allogeneic factors (decrease in human activity in the adjacent area). More... »

PAGES

938-949

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s106235902107030x

DOI

http://dx.doi.org/10.1134/s106235902107030x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143980500


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Penza State University, 440026, Penza, Russia", 
          "id": "http://www.grid.ac/institutes/grid.182651.9", 
          "name": [
            "Moscow State University, 119991, Moscow, Russia", 
            "Penza State University, 440026, Penza, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsyganov", 
        "givenName": "A. N.", 
        "id": "sg:person.0615277314.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615277314.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Penza State University, 440026, Penza, Russia", 
          "id": "http://www.grid.ac/institutes/grid.182651.9", 
          "name": [
            "Penza State University, 440026, Penza, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Komarov", 
        "givenName": "A. A.", 
        "id": "sg:person.01336265031.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336265031.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mazei", 
        "givenName": "N. G.", 
        "id": "sg:person.011115420712.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011115420712.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Penza State University, 440026, Penza, Russia", 
          "id": "http://www.grid.ac/institutes/grid.182651.9", 
          "name": [
            "Penza State University, 440026, Penza, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borisova", 
        "givenName": "T. V.", 
        "id": "sg:person.016367265240.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016367265240.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Geography, Russian Academy of Sciences, 109017, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.424976.a", 
          "name": [
            "Moscow State University, 119991, Moscow, Russia", 
            "Institute of Geography, Russian Academy of Sciences, 109017, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Novenko", 
        "givenName": "E. Yu.", 
        "id": "sg:person.010414242526.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010414242526.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mazei", 
        "givenName": "Yu. A.", 
        "id": "sg:person.01102144625.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102144625.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1021621622090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043318701", 
          "https://doi.org/10.1023/a:1021621622090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10452-009-9297-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047322714", 
          "https://doi.org/10.1007/s10452-009-9297-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10531-007-9221-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039144859", 
          "https://doi.org/10.1007/s10531-007-9221-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-12-17", 
    "datePublishedReg": "2021-12-17", 
    "description": "Testate amoebae are widely used in palaeoecological studies as indicators (proxies) of environmental conditions in mires and freshwater ecosystems. The goal of this work was to identify patterns in the dynamics of the species composition of testate amoeba assemblages during a \u201cwaterbody\u2013mire\u201d succession. This study was performed using multiproxy analysis of the deposits in Mochulya Bog, Kaluga oblast, European Russia. To explain changes in the species composition of testate amoebae, we used data on the plant macrofossil composition, peat humification, and the loss on ignition, together with the results of radiocarbon dating and pollen analysis. The deposit was formed by the sediments of the waterbody, with rich fen and poor fen. The age at the base of the deposits was 4100 cal. yr. BP. Changes in the species composition of testate amoeba assemblages were largely determined by local vegetation, especially Sphagnum mosses, which significantly transform the environment. The transformation of the waterbody into a rich fen may have most likely occurred as a result of climatic (allogeneic) factors: short-term drying and wildfires that might have led to the overgrowth of the shore. The transformation of the rich fen to a poor fen could have been related to the effects of both autogenic (accumulation of the deposits) and allogeneic factors (decrease in human activity in the adjacent area).", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s106235902107030x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1399509", 
        "issn": [
          "1608-3059", 
          "1062-3590"
        ], 
        "name": "Biology Bulletin", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "keywords": [
      "testate amoeba assemblages", 
      "rich fens", 
      "testate amoebae", 
      "amoeba assemblages", 
      "poor fen", 
      "plant macrofossil composition", 
      "Kaluga oblast", 
      "multiproxy analysis", 
      "short-term drying", 
      "macrofossil composition", 
      "peat humification", 
      "radiocarbon dating", 
      "palaeoecological studies", 
      "pollen analysis", 
      "local vegetation", 
      "freshwater ecosystems", 
      "species composition", 
      "European Russia", 
      "deposits", 
      "fens", 
      "climatic factors", 
      "Sphagnum mosses", 
      "mire succession", 
      "waterbodies", 
      "bogs", 
      "assemblages", 
      "succession", 
      "environmental conditions", 
      "allogeneic factors", 
      "composition", 
      "Holocene", 
      "dating", 
      "sediments", 
      "mires", 
      "shore", 
      "vegetation", 
      "species structure", 
      "wildfires", 
      "humification", 
      "Oblast", 
      "ecosystems", 
      "Russia", 
      "case study", 
      "dynamics", 
      "mosses", 
      "overgrowth", 
      "changes", 
      "base", 
      "amoebae", 
      "patterns", 
      "environment", 
      "drying", 
      "indicators", 
      "data", 
      "conditions", 
      "analysis", 
      "age", 
      "study", 
      "results", 
      "ignition", 
      "transformation", 
      "factors", 
      "structure", 
      "loss", 
      "effect", 
      "work", 
      "goal"
    ], 
    "name": "Dynamics of the Species Structure of Testate Amoeba Assemblages in a Waterbody-to-Mire Succession in the Holocene: A Case Study of Mochulya Bog, Kaluga Oblast, Russia", 
    "pagination": "938-949", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143980500"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s106235902107030x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s106235902107030x", 
      "https://app.dimensions.ai/details/publication/pub.1143980500"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_889.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s106235902107030x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s106235902107030x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s106235902107030x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s106235902107030x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s106235902107030x'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      22 PREDICATES      95 URIs      84 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s106235902107030x schema:about anzsrc-for:06
2 anzsrc-for:0602
3 schema:author N58f6a331a31d4ba2bad75998051f0108
4 schema:citation sg:pub.10.1007/s10452-009-9297-9
5 sg:pub.10.1007/s10531-007-9221-3
6 sg:pub.10.1023/a:1021621622090
7 schema:datePublished 2021-12-17
8 schema:datePublishedReg 2021-12-17
9 schema:description Testate amoebae are widely used in palaeoecological studies as indicators (proxies) of environmental conditions in mires and freshwater ecosystems. The goal of this work was to identify patterns in the dynamics of the species composition of testate amoeba assemblages during a “waterbody–mire” succession. This study was performed using multiproxy analysis of the deposits in Mochulya Bog, Kaluga oblast, European Russia. To explain changes in the species composition of testate amoebae, we used data on the plant macrofossil composition, peat humification, and the loss on ignition, together with the results of radiocarbon dating and pollen analysis. The deposit was formed by the sediments of the waterbody, with rich fen and poor fen. The age at the base of the deposits was 4100 cal. yr. BP. Changes in the species composition of testate amoeba assemblages were largely determined by local vegetation, especially Sphagnum mosses, which significantly transform the environment. The transformation of the waterbody into a rich fen may have most likely occurred as a result of climatic (allogeneic) factors: short-term drying and wildfires that might have led to the overgrowth of the shore. The transformation of the rich fen to a poor fen could have been related to the effects of both autogenic (accumulation of the deposits) and allogeneic factors (decrease in human activity in the adjacent area).
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N16e2669af9fb4cc99776eac503b016c4
14 N944cefcd89054fa98caa0aa36f07cba8
15 sg:journal.1399509
16 schema:keywords European Russia
17 Holocene
18 Kaluga oblast
19 Oblast
20 Russia
21 Sphagnum mosses
22 age
23 allogeneic factors
24 amoeba assemblages
25 amoebae
26 analysis
27 assemblages
28 base
29 bogs
30 case study
31 changes
32 climatic factors
33 composition
34 conditions
35 data
36 dating
37 deposits
38 drying
39 dynamics
40 ecosystems
41 effect
42 environment
43 environmental conditions
44 factors
45 fens
46 freshwater ecosystems
47 goal
48 humification
49 ignition
50 indicators
51 local vegetation
52 loss
53 macrofossil composition
54 mire succession
55 mires
56 mosses
57 multiproxy analysis
58 overgrowth
59 palaeoecological studies
60 patterns
61 peat humification
62 plant macrofossil composition
63 pollen analysis
64 poor fen
65 radiocarbon dating
66 results
67 rich fens
68 sediments
69 shore
70 short-term drying
71 species composition
72 species structure
73 structure
74 study
75 succession
76 testate amoeba assemblages
77 testate amoebae
78 transformation
79 vegetation
80 waterbodies
81 wildfires
82 work
83 schema:name Dynamics of the Species Structure of Testate Amoeba Assemblages in a Waterbody-to-Mire Succession in the Holocene: A Case Study of Mochulya Bog, Kaluga Oblast, Russia
84 schema:pagination 938-949
85 schema:productId N0df89a1807d140b4b7e450e26fe4de32
86 N510ab7939c2d44b6ba49f0604c8b4073
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143980500
88 https://doi.org/10.1134/s106235902107030x
89 schema:sdDatePublished 2022-05-20T07:37
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Nbd3919e62e6c41ae9bee3cbd20089a17
92 schema:url https://doi.org/10.1134/s106235902107030x
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N0df89a1807d140b4b7e450e26fe4de32 schema:name dimensions_id
97 schema:value pub.1143980500
98 rdf:type schema:PropertyValue
99 N16e2669af9fb4cc99776eac503b016c4 schema:issueNumber 7
100 rdf:type schema:PublicationIssue
101 N510ab7939c2d44b6ba49f0604c8b4073 schema:name doi
102 schema:value 10.1134/s106235902107030x
103 rdf:type schema:PropertyValue
104 N58f6a331a31d4ba2bad75998051f0108 rdf:first sg:person.0615277314.60
105 rdf:rest Na1d60a7d8c66494f94c059f81e6f4557
106 N59d2c32128f142b5bc1b601602427a76 rdf:first sg:person.011115420712.40
107 rdf:rest N9c8fd77ea8504047be202766b440831d
108 N944cefcd89054fa98caa0aa36f07cba8 schema:volumeNumber 48
109 rdf:type schema:PublicationVolume
110 N9c8fd77ea8504047be202766b440831d rdf:first sg:person.016367265240.04
111 rdf:rest Nace297b45626439694caf472ed816572
112 Na1d60a7d8c66494f94c059f81e6f4557 rdf:first sg:person.01336265031.63
113 rdf:rest N59d2c32128f142b5bc1b601602427a76
114 Nace297b45626439694caf472ed816572 rdf:first sg:person.010414242526.14
115 rdf:rest Nc62c21ee751c47bb92ded01ecae48dac
116 Nbd3919e62e6c41ae9bee3cbd20089a17 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nc62c21ee751c47bb92ded01ecae48dac rdf:first sg:person.01102144625.04
119 rdf:rest rdf:nil
120 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biological Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
124 schema:name Ecology
125 rdf:type schema:DefinedTerm
126 sg:journal.1399509 schema:issn 1062-3590
127 1608-3059
128 schema:name Biology Bulletin
129 schema:publisher Pleiades Publishing
130 rdf:type schema:Periodical
131 sg:person.010414242526.14 schema:affiliation grid-institutes:grid.424976.a
132 schema:familyName Novenko
133 schema:givenName E. Yu.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010414242526.14
135 rdf:type schema:Person
136 sg:person.01102144625.04 schema:affiliation grid-institutes:grid.14476.30
137 schema:familyName Mazei
138 schema:givenName Yu. A.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102144625.04
140 rdf:type schema:Person
141 sg:person.011115420712.40 schema:affiliation grid-institutes:grid.14476.30
142 schema:familyName Mazei
143 schema:givenName N. G.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011115420712.40
145 rdf:type schema:Person
146 sg:person.01336265031.63 schema:affiliation grid-institutes:grid.182651.9
147 schema:familyName Komarov
148 schema:givenName A. A.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336265031.63
150 rdf:type schema:Person
151 sg:person.016367265240.04 schema:affiliation grid-institutes:grid.182651.9
152 schema:familyName Borisova
153 schema:givenName T. V.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016367265240.04
155 rdf:type schema:Person
156 sg:person.0615277314.60 schema:affiliation grid-institutes:grid.182651.9
157 schema:familyName Tsyganov
158 schema:givenName A. N.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615277314.60
160 rdf:type schema:Person
161 sg:pub.10.1007/s10452-009-9297-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047322714
162 https://doi.org/10.1007/s10452-009-9297-9
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s10531-007-9221-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039144859
165 https://doi.org/10.1007/s10531-007-9221-3
166 rdf:type schema:CreativeWork
167 sg:pub.10.1023/a:1021621622090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043318701
168 https://doi.org/10.1023/a:1021621622090
169 rdf:type schema:CreativeWork
170 grid-institutes:grid.14476.30 schema:alternateName Moscow State University, 119991, Moscow, Russia
171 schema:name Moscow State University, 119991, Moscow, Russia
172 rdf:type schema:Organization
173 grid-institutes:grid.182651.9 schema:alternateName Penza State University, 440026, Penza, Russia
174 schema:name Moscow State University, 119991, Moscow, Russia
175 Penza State University, 440026, Penza, Russia
176 rdf:type schema:Organization
177 grid-institutes:grid.424976.a schema:alternateName Institute of Geography, Russian Academy of Sciences, 109017, Moscow, Russia
178 schema:name Institute of Geography, Russian Academy of Sciences, 109017, Moscow, Russia
179 Moscow State University, 119991, Moscow, Russia
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...