Fast separation of light hydrocarbons by gas chromatography on monolithic capillary columns based on silica gel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-04

AUTHORS

A. A. Korolev, V. E. Shiryaeva, T. P. Popova, A. A. Kurganov

ABSTRACT

Monolithic capillary columns based on silica gel were tested in the course of high-speed gas-chromatographic separations of a five-component mixture of C1–C4 hydrocarbons. It was found that short-length monolithic columns could be used because of their high specific efficiency; this allowed us to shorten the column dead time and the duration of analysis. The column performance of about 1000 theoretical plates per second was reached. The test sorbate mixture was completely separated on a 58.5-cm column with an efficiency of about 18 700 theoretical plates in a time shorter than 17 s. It was noted that CO2 and N2O should be predominantly used as carrier gases. More... »

PAGES

313-318

References to SciGraph publications

Journal

TITLE

Journal of Analytical Chemistry

ISSUE

4

VOLUME

62

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s106193480704003x

DOI

http://dx.doi.org/10.1134/s106193480704003x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024235889


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korolev", 
        "givenName": "A. A.", 
        "id": "sg:person.0761776377.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiryaeva", 
        "givenName": "V. E.", 
        "id": "sg:person.016163553457.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016163553457.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popova", 
        "givenName": "T. P.", 
        "id": "sg:person.01123707162.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurganov", 
        "givenName": "A. A.", 
        "id": "sg:person.01240135562.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0021-9673(99)00227-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007717736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(97)01202-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009873948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02290407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011666612", 
          "https://doi.org/10.1007/bf02290407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02290407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011666612", 
          "https://doi.org/10.1007/bf02290407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(00)93765-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020359741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(00)99970-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027111900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(00)00152-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041695886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(97)00377-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051537768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00251a011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054984982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60183a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055042679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60210a014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055047993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60231a003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055050605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac960281m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055072703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac960281m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055072703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac990942q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055077361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac990942q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055077361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/chromsci/7.10.614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059466035"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-04", 
    "datePublishedReg": "2007-04-01", 
    "description": "Monolithic capillary columns based on silica gel were tested in the course of high-speed gas-chromatographic separations of a five-component mixture of C1\u2013C4 hydrocarbons. It was found that short-length monolithic columns could be used because of their high specific efficiency; this allowed us to shorten the column dead time and the duration of analysis. The column performance of about 1000 theoretical plates per second was reached. The test sorbate mixture was completely separated on a 58.5-cm column with an efficiency of about 18 700 theoretical plates in a time shorter than 17 s. It was noted that CO2 and N2O should be predominantly used as carrier gases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s106193480704003x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017946", 
        "issn": [
          "1061-9348", 
          "1608-3199"
        ], 
        "name": "Journal of Analytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "name": "Fast separation of light hydrocarbons by gas chromatography on monolithic capillary columns based on silica gel", 
    "pagination": "313-318", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7376776d26d82d6c4da2d457b9dd26d55ce999a41ffb7811bdb0b349f6784741"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s106193480704003x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024235889"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s106193480704003x", 
      "https://app.dimensions.ai/details/publication/pub.1024235889"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71692_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS106193480704003X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s106193480704003x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s106193480704003x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s106193480704003x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s106193480704003x'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s106193480704003x schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Nc7475b4827c84d308e8ed2000912db68
4 schema:citation sg:pub.10.1007/bf02290407
5 https://doi.org/10.1016/s0021-9673(00)00152-7
6 https://doi.org/10.1016/s0021-9673(00)93765-8
7 https://doi.org/10.1016/s0021-9673(00)99970-9
8 https://doi.org/10.1016/s0021-9673(97)00377-4
9 https://doi.org/10.1016/s0021-9673(97)01202-8
10 https://doi.org/10.1016/s0021-9673(99)00227-7
11 https://doi.org/10.1021/ac00251a011
12 https://doi.org/10.1021/ac60183a005
13 https://doi.org/10.1021/ac60210a014
14 https://doi.org/10.1021/ac60231a003
15 https://doi.org/10.1021/ac960281m
16 https://doi.org/10.1021/ac990942q
17 https://doi.org/10.1093/chromsci/7.10.614
18 schema:datePublished 2007-04
19 schema:datePublishedReg 2007-04-01
20 schema:description Monolithic capillary columns based on silica gel were tested in the course of high-speed gas-chromatographic separations of a five-component mixture of C1–C4 hydrocarbons. It was found that short-length monolithic columns could be used because of their high specific efficiency; this allowed us to shorten the column dead time and the duration of analysis. The column performance of about 1000 theoretical plates per second was reached. The test sorbate mixture was completely separated on a 58.5-cm column with an efficiency of about 18 700 theoretical plates in a time shorter than 17 s. It was noted that CO2 and N2O should be predominantly used as carrier gases.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N8b643bf286c34e40aaba5f38e2267d37
25 Nb54aca690f5949d599901852f13ce19d
26 sg:journal.1017946
27 schema:name Fast separation of light hydrocarbons by gas chromatography on monolithic capillary columns based on silica gel
28 schema:pagination 313-318
29 schema:productId N3de20cd022054b3da6aa663d90ab0839
30 Nb74d9343866640fbb1a7a3be4a40710c
31 Nd708fd31e42c416ba1cbf556f4bf3aa6
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024235889
33 https://doi.org/10.1134/s106193480704003x
34 schema:sdDatePublished 2019-04-11T12:59
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N71c4955cdf4e48c59323fa873109d019
37 schema:url http://link.springer.com/10.1134%2FS106193480704003X
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N3de20cd022054b3da6aa663d90ab0839 schema:name doi
42 schema:value 10.1134/s106193480704003x
43 rdf:type schema:PropertyValue
44 N71c4955cdf4e48c59323fa873109d019 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N8b643bf286c34e40aaba5f38e2267d37 schema:issueNumber 4
47 rdf:type schema:PublicationIssue
48 Nb54aca690f5949d599901852f13ce19d schema:volumeNumber 62
49 rdf:type schema:PublicationVolume
50 Nb74d9343866640fbb1a7a3be4a40710c schema:name readcube_id
51 schema:value 7376776d26d82d6c4da2d457b9dd26d55ce999a41ffb7811bdb0b349f6784741
52 rdf:type schema:PropertyValue
53 Nc7475b4827c84d308e8ed2000912db68 rdf:first sg:person.0761776377.67
54 rdf:rest Nef2efa522d8f4019ac2ce812d5a4b631
55 Nc8de240c1de14f5490de2363e2efdfb9 rdf:first sg:person.01123707162.15
56 rdf:rest Nf8fabf8329a8484d8b77f45b4ed79433
57 Nd708fd31e42c416ba1cbf556f4bf3aa6 schema:name dimensions_id
58 schema:value pub.1024235889
59 rdf:type schema:PropertyValue
60 Nef2efa522d8f4019ac2ce812d5a4b631 rdf:first sg:person.016163553457.07
61 rdf:rest Nc8de240c1de14f5490de2363e2efdfb9
62 Nf8fabf8329a8484d8b77f45b4ed79433 rdf:first sg:person.01240135562.44
63 rdf:rest rdf:nil
64 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
65 schema:name Engineering
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
68 schema:name Chemical Engineering
69 rdf:type schema:DefinedTerm
70 sg:journal.1017946 schema:issn 1061-9348
71 1608-3199
72 schema:name Journal of Analytical Chemistry
73 rdf:type schema:Periodical
74 sg:person.01123707162.15 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
75 schema:familyName Popova
76 schema:givenName T. P.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15
78 rdf:type schema:Person
79 sg:person.01240135562.44 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
80 schema:familyName Kurganov
81 schema:givenName A. A.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44
83 rdf:type schema:Person
84 sg:person.016163553457.07 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
85 schema:familyName Shiryaeva
86 schema:givenName V. E.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016163553457.07
88 rdf:type schema:Person
89 sg:person.0761776377.67 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
90 schema:familyName Korolev
91 schema:givenName A. A.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67
93 rdf:type schema:Person
94 sg:pub.10.1007/bf02290407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011666612
95 https://doi.org/10.1007/bf02290407
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/s0021-9673(00)00152-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041695886
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/s0021-9673(00)93765-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020359741
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/s0021-9673(00)99970-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027111900
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/s0021-9673(97)00377-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051537768
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0021-9673(97)01202-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009873948
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0021-9673(99)00227-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007717736
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1021/ac00251a011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054984982
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1021/ac60183a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055042679
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1021/ac60210a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055047993
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1021/ac60231a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055050605
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1021/ac960281m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055072703
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1021/ac990942q schema:sameAs https://app.dimensions.ai/details/publication/pub.1055077361
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1093/chromsci/7.10.614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059466035
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
124 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...