Ontology type: schema:ScholarlyArticle
2014-09-21
AUTHORSS. Barany, N. Kartel’, R. Meszaros
ABSTRACTThe effect of electrolytes with single-, double- and triple-charged counterions, as well as cationic (cetyltrimethylammonium bromide) and anionic (sodium dodecyl sulfate) surfactants, on the electrokinetic potential of multiwall carbon nanotubes prepared via catalytic pyrolysis of propylene in a gas phase according to the CCVD technology has been studied. It has been shown that the influence of different electrolytes on the electrophoretic mobility of the nanotubes does not differ essentially from their effect on the behavior of well-studied inorganic dispersed particles; i.e., the dependence of the absolute values of the ζ-potential on the concentration of a 1: 1 electrolyte passes through a maximum and the introduction of double-charged counterions dramatically reduces the ζ-potential, while the addition of triple-charged cations and a cationic surfactant causes charge reversal of the nanotube surface. The adsorption of sodium dodecyl sulfate in a neutral medium increases the negative ζ values; this effect evens out in the presence of an alkali due to a rise in the electrostatic repulsion between surfactant anions and nanotube surface, which bears a high negative charge resulting from the dissociation of surface functional groups. More... »
PAGES509-513
http://scigraph.springernature.com/pub.10.1134/s1061933x14050020
DOIhttp://dx.doi.org/10.1134/s1061933x14050020
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1041474264
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Ferenc R\u00e1k\u00f3czi Transcarpathian Hungarian Institute, pl. Koshuta 6, 90202, Beregovo, Ukraine",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute of Chemistry and MTA-ME Materials Science Research Group, University of Miskolc, 3515, Miskolc-Egyetemvaros, Hungary",
"Ferenc R\u00e1k\u00f3czi Transcarpathian Hungarian Institute, pl. Koshuta 6, 90202, Beregovo, Ukraine"
],
"type": "Organization"
},
"familyName": "Barany",
"givenName": "S.",
"id": "sg:person.01034047212.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034047212.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, ul. Generala Naumova 17, 03164, Kyiv, Ukraine",
"id": "http://www.grid.ac/institutes/grid.464622.0",
"name": [
"Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, ul. Generala Naumova 17, 03164, Kyiv, Ukraine"
],
"type": "Organization"
},
"familyName": "Kartel\u2019",
"givenName": "N.",
"id": "sg:person.07551640404.65",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07551640404.65"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Chemistry and MTA-ME Materials Science Research Group, University of Miskolc, 3515, Miskolc-Egyetemvaros, Hungary",
"id": "http://www.grid.ac/institutes/grid.10334.35",
"name": [
"Institute of Chemistry and MTA-ME Materials Science Research Group, University of Miskolc, 3515, Miskolc-Egyetemvaros, Hungary"
],
"type": "Organization"
},
"familyName": "Meszaros",
"givenName": "R.",
"id": "sg:person.011656121750.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011656121750.63"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/354056a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016485857",
"https://doi.org/10.1038/354056a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1061933x13020038",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014372066",
"https://doi.org/10.1134/s1061933x13020038"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-09-21",
"datePublishedReg": "2014-09-21",
"description": "The effect of electrolytes with single-, double- and triple-charged counterions, as well as cationic (cetyltrimethylammonium bromide) and anionic (sodium dodecyl sulfate) surfactants, on the electrokinetic potential of multiwall carbon nanotubes prepared via catalytic pyrolysis of propylene in a gas phase according to the CCVD technology has been studied. It has been shown that the influence of different electrolytes on the electrophoretic mobility of the nanotubes does not differ essentially from their effect on the behavior of well-studied inorganic dispersed particles; i.e., the dependence of the absolute values of the \u03b6-potential on the concentration of a 1: 1 electrolyte passes through a maximum and the introduction of double-charged counterions dramatically reduces the \u03b6-potential, while the addition of triple-charged cations and a cationic surfactant causes charge reversal of the nanotube surface. The adsorption of sodium dodecyl sulfate in a neutral medium increases the negative \u03b6 values; this effect evens out in the presence of an alkali due to a rise in the electrostatic repulsion between surfactant anions and nanotube surface, which bears a high negative charge resulting from the dissociation of surface functional groups.",
"genre": "article",
"id": "sg:pub.10.1134/s1061933x14050020",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1359001",
"issn": [
"0023-2912",
"1061-933X"
],
"name": "Colloid Journal",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "76"
}
],
"keywords": [
"nanotube surface",
"electrokinetic potential",
"carbon nanotubes",
"surface functional groups",
"effect of electrolytes",
"multiwall carbon nanotubes",
"high negative charge",
"sodium dodecyl sulfate",
"surfactant anions",
"anionic surfactants",
"different electrolytes",
"charge reversal",
"aqueous solution",
"electrostatic repulsion",
"multilayer carbon nanotubes",
"functional groups",
"gas phase",
"neutral medium",
"catalytic pyrolysis",
"electrolyte",
"dodecyl sulfate",
"negative charge",
"nanotubes",
"counterions",
"surfactants",
"cationic",
"electrophoretic mobility",
"anions",
"adsorption",
"cations",
"surface",
"propylene",
"pyrolysis",
"repulsion",
"dissociation",
"potential",
"alkali",
"charge",
"sulfate",
"particles",
"solution",
"concentration",
"phase",
"mobility",
"presence",
"medium",
"effect",
"dependence",
"absolute value",
"values",
"addition",
"behavior",
"introduction",
"maximum",
"influence",
"group",
"technology",
"rise",
"reversal"
],
"name": "Electrokinetic potential of multilayer carbon nanotubes in aqueous solutions of electrolytes and surfactants",
"pagination": "509-513",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1041474264"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1061933x14050020"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1061933x14050020",
"https://app.dimensions.ai/details/publication/pub.1041474264"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:30",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_642.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1061933x14050020"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1061933x14050020'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1061933x14050020'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1061933x14050020'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1061933x14050020'
This table displays all metadata directly associated to this object as RDF triples.
146 TRIPLES
22 PREDICATES
86 URIs
76 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1061933x14050020 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | schema:author | Nb33b99bd66454014a304ecef436d0c7e |
4 | ″ | schema:citation | sg:pub.10.1038/354056a0 |
5 | ″ | ″ | sg:pub.10.1134/s1061933x13020038 |
6 | ″ | schema:datePublished | 2014-09-21 |
7 | ″ | schema:datePublishedReg | 2014-09-21 |
8 | ″ | schema:description | The effect of electrolytes with single-, double- and triple-charged counterions, as well as cationic (cetyltrimethylammonium bromide) and anionic (sodium dodecyl sulfate) surfactants, on the electrokinetic potential of multiwall carbon nanotubes prepared via catalytic pyrolysis of propylene in a gas phase according to the CCVD technology has been studied. It has been shown that the influence of different electrolytes on the electrophoretic mobility of the nanotubes does not differ essentially from their effect on the behavior of well-studied inorganic dispersed particles; i.e., the dependence of the absolute values of the ζ-potential on the concentration of a 1: 1 electrolyte passes through a maximum and the introduction of double-charged counterions dramatically reduces the ζ-potential, while the addition of triple-charged cations and a cationic surfactant causes charge reversal of the nanotube surface. The adsorption of sodium dodecyl sulfate in a neutral medium increases the negative ζ values; this effect evens out in the presence of an alkali due to a rise in the electrostatic repulsion between surfactant anions and nanotube surface, which bears a high negative charge resulting from the dissociation of surface functional groups. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N700bd5ecb14f4029bdafa6ef7d1e88a1 |
13 | ″ | ″ | N9a41a82385d7493d9fa1098a70a86680 |
14 | ″ | ″ | sg:journal.1359001 |
15 | ″ | schema:keywords | absolute value |
16 | ″ | ″ | addition |
17 | ″ | ″ | adsorption |
18 | ″ | ″ | alkali |
19 | ″ | ″ | anionic surfactants |
20 | ″ | ″ | anions |
21 | ″ | ″ | aqueous solution |
22 | ″ | ″ | behavior |
23 | ″ | ″ | carbon nanotubes |
24 | ″ | ″ | catalytic pyrolysis |
25 | ″ | ″ | cationic |
26 | ″ | ″ | cations |
27 | ″ | ″ | charge |
28 | ″ | ″ | charge reversal |
29 | ″ | ″ | concentration |
30 | ″ | ″ | counterions |
31 | ″ | ″ | dependence |
32 | ″ | ″ | different electrolytes |
33 | ″ | ″ | dissociation |
34 | ″ | ″ | dodecyl sulfate |
35 | ″ | ″ | effect |
36 | ″ | ″ | effect of electrolytes |
37 | ″ | ″ | electrokinetic potential |
38 | ″ | ″ | electrolyte |
39 | ″ | ″ | electrophoretic mobility |
40 | ″ | ″ | electrostatic repulsion |
41 | ″ | ″ | functional groups |
42 | ″ | ″ | gas phase |
43 | ″ | ″ | group |
44 | ″ | ″ | high negative charge |
45 | ″ | ″ | influence |
46 | ″ | ″ | introduction |
47 | ″ | ″ | maximum |
48 | ″ | ″ | medium |
49 | ″ | ″ | mobility |
50 | ″ | ″ | multilayer carbon nanotubes |
51 | ″ | ″ | multiwall carbon nanotubes |
52 | ″ | ″ | nanotube surface |
53 | ″ | ″ | nanotubes |
54 | ″ | ″ | negative charge |
55 | ″ | ″ | neutral medium |
56 | ″ | ″ | particles |
57 | ″ | ″ | phase |
58 | ″ | ″ | potential |
59 | ″ | ″ | presence |
60 | ″ | ″ | propylene |
61 | ″ | ″ | pyrolysis |
62 | ″ | ″ | repulsion |
63 | ″ | ″ | reversal |
64 | ″ | ″ | rise |
65 | ″ | ″ | sodium dodecyl sulfate |
66 | ″ | ″ | solution |
67 | ″ | ″ | sulfate |
68 | ″ | ″ | surface |
69 | ″ | ″ | surface functional groups |
70 | ″ | ″ | surfactant anions |
71 | ″ | ″ | surfactants |
72 | ″ | ″ | technology |
73 | ″ | ″ | values |
74 | ″ | schema:name | Electrokinetic potential of multilayer carbon nanotubes in aqueous solutions of electrolytes and surfactants |
75 | ″ | schema:pagination | 509-513 |
76 | ″ | schema:productId | N1278c8d2f83f41ddbb9a1b00d2aeba94 |
77 | ″ | ″ | Naeb67b8450704607894ff0aee9a77bf5 |
78 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041474264 |
79 | ″ | ″ | https://doi.org/10.1134/s1061933x14050020 |
80 | ″ | schema:sdDatePublished | 2022-05-20T07:30 |
81 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
82 | ″ | schema:sdPublisher | N52eb451f72e04a2f8f8bac51e91d72a4 |
83 | ″ | schema:url | https://doi.org/10.1134/s1061933x14050020 |
84 | ″ | sgo:license | sg:explorer/license/ |
85 | ″ | sgo:sdDataset | articles |
86 | ″ | rdf:type | schema:ScholarlyArticle |
87 | N1278c8d2f83f41ddbb9a1b00d2aeba94 | schema:name | dimensions_id |
88 | ″ | schema:value | pub.1041474264 |
89 | ″ | rdf:type | schema:PropertyValue |
90 | N265b28ed213544f5b6163df774def5b9 | rdf:first | sg:person.07551640404.65 |
91 | ″ | rdf:rest | N3ff8630b97a64733af1b15a5a62212c9 |
92 | N3ff8630b97a64733af1b15a5a62212c9 | rdf:first | sg:person.011656121750.63 |
93 | ″ | rdf:rest | rdf:nil |
94 | N52eb451f72e04a2f8f8bac51e91d72a4 | schema:name | Springer Nature - SN SciGraph project |
95 | ″ | rdf:type | schema:Organization |
96 | N700bd5ecb14f4029bdafa6ef7d1e88a1 | schema:issueNumber | 5 |
97 | ″ | rdf:type | schema:PublicationIssue |
98 | N9a41a82385d7493d9fa1098a70a86680 | schema:volumeNumber | 76 |
99 | ″ | rdf:type | schema:PublicationVolume |
100 | Naeb67b8450704607894ff0aee9a77bf5 | schema:name | doi |
101 | ″ | schema:value | 10.1134/s1061933x14050020 |
102 | ″ | rdf:type | schema:PropertyValue |
103 | Nb33b99bd66454014a304ecef436d0c7e | rdf:first | sg:person.01034047212.46 |
104 | ″ | rdf:rest | N265b28ed213544f5b6163df774def5b9 |
105 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Chemical Sciences |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Physical Chemistry (incl. Structural) |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | sg:journal.1359001 | schema:issn | 0023-2912 |
112 | ″ | ″ | 1061-933X |
113 | ″ | schema:name | Colloid Journal |
114 | ″ | schema:publisher | Pleiades Publishing |
115 | ″ | rdf:type | schema:Periodical |
116 | sg:person.01034047212.46 | schema:affiliation | grid-institutes:None |
117 | ″ | schema:familyName | Barany |
118 | ″ | schema:givenName | S. |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034047212.46 |
120 | ″ | rdf:type | schema:Person |
121 | sg:person.011656121750.63 | schema:affiliation | grid-institutes:grid.10334.35 |
122 | ″ | schema:familyName | Meszaros |
123 | ″ | schema:givenName | R. |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011656121750.63 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.07551640404.65 | schema:affiliation | grid-institutes:grid.464622.0 |
127 | ″ | schema:familyName | Kartel’ |
128 | ″ | schema:givenName | N. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07551640404.65 |
130 | ″ | rdf:type | schema:Person |
131 | sg:pub.10.1038/354056a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016485857 |
132 | ″ | ″ | https://doi.org/10.1038/354056a0 |
133 | ″ | rdf:type | schema:CreativeWork |
134 | sg:pub.10.1134/s1061933x13020038 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014372066 |
135 | ″ | ″ | https://doi.org/10.1134/s1061933x13020038 |
136 | ″ | rdf:type | schema:CreativeWork |
137 | grid-institutes:None | schema:alternateName | Ferenc Rákóczi Transcarpathian Hungarian Institute, pl. Koshuta 6, 90202, Beregovo, Ukraine |
138 | ″ | schema:name | Ferenc Rákóczi Transcarpathian Hungarian Institute, pl. Koshuta 6, 90202, Beregovo, Ukraine |
139 | ″ | ″ | Institute of Chemistry and MTA-ME Materials Science Research Group, University of Miskolc, 3515, Miskolc-Egyetemvaros, Hungary |
140 | ″ | rdf:type | schema:Organization |
141 | grid-institutes:grid.10334.35 | schema:alternateName | Institute of Chemistry and MTA-ME Materials Science Research Group, University of Miskolc, 3515, Miskolc-Egyetemvaros, Hungary |
142 | ″ | schema:name | Institute of Chemistry and MTA-ME Materials Science Research Group, University of Miskolc, 3515, Miskolc-Egyetemvaros, Hungary |
143 | ″ | rdf:type | schema:Organization |
144 | grid-institutes:grid.464622.0 | schema:alternateName | Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, ul. Generala Naumova 17, 03164, Kyiv, Ukraine |
145 | ″ | schema:name | Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, ul. Generala Naumova 17, 03164, Kyiv, Ukraine |
146 | ″ | rdf:type | schema:Organization |