1444-nm Q-switched pulse generator based on Nd:YAG/V:YAG microchip laser View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-05-03

AUTHORS

J. Šulc, J. Novák, H. Jelínková, K. Nejezchleb, V. Škoda

ABSTRACT

Q-switched microchip laser emitting radiation at eye-safe wavelength 1444 nm was designed and realized. This laser was based on composite crystal which consists of 4 mm long Nd:YAG active medium diffusion bonded with 1 mm long V:YAG saturable absorber. The diameter of the composite crystal was 5 mm. The initial transmission of the V:YAG part was T0 = 94% @ 1440 nm. The microchip resonator consists of dielectric mirrors, directly deposited onto the composite crystal surfaces. These mirrors were specially designed to ensure desired emission at 1444 nm and to prevent parasitic lasing at other Nd3+ transmissions. The output coupler with reflectivity 94% for the generated wavelength 1444 nm was placed on the V3+-doped part. The laser was operating under pulsed pumping for the duty-cycle up to 50%. With increasing value of mean pumping power a strong decrease of generated pulse length was observed. The shortest generated pulses were 4.2 ns long (FWHM). Stable pulses with energy 34 μJ were generated with repetition rate up to 1.5 kHz. Corresponding pulse peak power was 8.2 kW. The wavelength of linearly polarized TEM00 laser mode was fixed to 1444 nm. More... »

PAGES

1288-1294

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1054660x10110216

DOI

http://dx.doi.org/10.1134/s1054660x10110216

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034428841


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehov\u00e1 7, 115 19, Prague 1, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.6652.7", 
          "name": [
            "Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehov\u00e1 7, 115 19, Prague 1, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u0160ulc", 
        "givenName": "J.", 
        "id": "sg:person.0665675210.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665675210.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehov\u00e1 7, 115 19, Prague 1, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.6652.7", 
          "name": [
            "Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehov\u00e1 7, 115 19, Prague 1, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nov\u00e1k", 
        "givenName": "J.", 
        "id": "sg:person.01142353654.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142353654.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehov\u00e1 7, 115 19, Prague 1, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.6652.7", 
          "name": [
            "Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehov\u00e1 7, 115 19, Prague 1, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jel\u00ednkov\u00e1", 
        "givenName": "H.", 
        "id": "sg:person.01343166110.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343166110.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Crytur, Ltd. Turnov, Palack\u00e9ho 175, 511 01, Turnov, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.447944.e", 
          "name": [
            "Crytur, Ltd. Turnov, Palack\u00e9ho 175, 511 01, Turnov, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nejezchleb", 
        "givenName": "K.", 
        "id": "sg:person.07723375227.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07723375227.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Crytur, Ltd. Turnov, Palack\u00e9ho 175, 511 01, Turnov, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.447944.e", 
          "name": [
            "Crytur, Ltd. Turnov, Palack\u00e9ho 175, 511 01, Turnov, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u0160koda", 
        "givenName": "V.", 
        "id": "sg:person.011316336227.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011316336227.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00340-004-1526-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025658098", 
          "https://doi.org/10.1007/s00340-004-1526-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s11490-008-4005-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039344470", 
          "https://doi.org/10.1134/s11490-008-4005-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-34838-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027314246", 
          "https://doi.org/10.1007/978-3-540-34838-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-14219-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023286628", 
          "https://doi.org/10.1007/978-3-662-14219-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0643-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108501090", 
          "https://doi.org/10.1007/978-1-4612-0643-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-05-03", 
    "datePublishedReg": "2010-05-03", 
    "description": "Q-switched microchip laser emitting radiation at eye-safe wavelength 1444 nm was designed and realized. This laser was based on composite crystal which consists of 4 mm long Nd:YAG active medium diffusion bonded with 1 mm long V:YAG saturable absorber. The diameter of the composite crystal was 5 mm. The initial transmission of the V:YAG part was T0 = 94% @ 1440 nm. The microchip resonator consists of dielectric mirrors, directly deposited onto the composite crystal surfaces. These mirrors were specially designed to ensure desired emission at 1444 nm and to prevent parasitic lasing at other Nd3+ transmissions. The output coupler with reflectivity 94% for the generated wavelength 1444 nm was placed on the V3+-doped part. The laser was operating under pulsed pumping for the duty-cycle up to 50%. With increasing value of mean pumping power a strong decrease of generated pulse length was observed. The shortest generated pulses were 4.2 ns long (FWHM). Stable pulses with energy 34 \u03bcJ were generated with repetition rate up to 1.5 kHz. Corresponding pulse peak power was 8.2 kW. The wavelength of linearly polarized TEM00 laser mode was fixed to 1444 nm.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1054660x10110216", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1030496", 
        "issn": [
          "1054-660X", 
          "1555-6611"
        ], 
        "name": "Laser Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "microchip laser", 
      "YAG/V", 
      "YAG microchip laser", 
      "pulse peak power", 
      "YAG saturable absorber", 
      "composite crystal", 
      "YAG part", 
      "microchip resonator", 
      "laser modes", 
      "saturable absorber", 
      "dielectric mirrors", 
      "output coupler", 
      "stable pulses", 
      "long Nd", 
      "repetition rate", 
      "pulse length", 
      "laser", 
      "peak power", 
      "initial transmission", 
      "crystal surface", 
      "mirror", 
      "pulses", 
      "Nd", 
      "crystals", 
      "\u03bcJ", 
      "pulse generator", 
      "wavelength", 
      "Nd3", 
      "strong decrease", 
      "coupler", 
      "resonator", 
      "pumping", 
      "radiation", 
      "absorber", 
      "ns", 
      "emission", 
      "kHz", 
      "power", 
      "mode", 
      "transmission", 
      "diffusion", 
      "surface", 
      "diameter", 
      "T0", 
      "V3", 
      "length", 
      "generator", 
      "values", 
      "media diffusion", 
      "part", 
      "decrease", 
      "rate"
    ], 
    "name": "1444-nm Q-switched pulse generator based on Nd:YAG/V:YAG microchip laser", 
    "pagination": "1288-1294", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034428841"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1054660x10110216"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1054660x10110216", 
      "https://app.dimensions.ai/details/publication/pub.1034428841"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1054660x10110216"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1054660x10110216'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1054660x10110216'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1054660x10110216'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1054660x10110216'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      22 PREDICATES      82 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1054660x10110216 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nef50197d7e9841d4934605f015be8e40
4 schema:citation sg:pub.10.1007/978-1-4612-0643-9
5 sg:pub.10.1007/978-3-540-34838-2
6 sg:pub.10.1007/978-3-662-14219-6
7 sg:pub.10.1007/s00340-004-1526-2
8 sg:pub.10.1134/s11490-008-4005-3
9 schema:datePublished 2010-05-03
10 schema:datePublishedReg 2010-05-03
11 schema:description Q-switched microchip laser emitting radiation at eye-safe wavelength 1444 nm was designed and realized. This laser was based on composite crystal which consists of 4 mm long Nd:YAG active medium diffusion bonded with 1 mm long V:YAG saturable absorber. The diameter of the composite crystal was 5 mm. The initial transmission of the V:YAG part was T0 = 94% @ 1440 nm. The microchip resonator consists of dielectric mirrors, directly deposited onto the composite crystal surfaces. These mirrors were specially designed to ensure desired emission at 1444 nm and to prevent parasitic lasing at other Nd3+ transmissions. The output coupler with reflectivity 94% for the generated wavelength 1444 nm was placed on the V3+-doped part. The laser was operating under pulsed pumping for the duty-cycle up to 50%. With increasing value of mean pumping power a strong decrease of generated pulse length was observed. The shortest generated pulses were 4.2 ns long (FWHM). Stable pulses with energy 34 μJ were generated with repetition rate up to 1.5 kHz. Corresponding pulse peak power was 8.2 kW. The wavelength of linearly polarized TEM00 laser mode was fixed to 1444 nm.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Ne6d0cb7343574b19b547409effd121fe
16 Nefae3414edd541f2ab3f95922d5390ab
17 sg:journal.1030496
18 schema:keywords Nd
19 Nd3
20 T0
21 V3
22 YAG microchip laser
23 YAG part
24 YAG saturable absorber
25 YAG/V
26 absorber
27 composite crystal
28 coupler
29 crystal surface
30 crystals
31 decrease
32 diameter
33 dielectric mirrors
34 diffusion
35 emission
36 generator
37 initial transmission
38 kHz
39 laser
40 laser modes
41 length
42 long Nd
43 media diffusion
44 microchip laser
45 microchip resonator
46 mirror
47 mode
48 ns
49 output coupler
50 part
51 peak power
52 power
53 pulse generator
54 pulse length
55 pulse peak power
56 pulses
57 pumping
58 radiation
59 rate
60 repetition rate
61 resonator
62 saturable absorber
63 stable pulses
64 strong decrease
65 surface
66 transmission
67 values
68 wavelength
69 μJ
70 schema:name 1444-nm Q-switched pulse generator based on Nd:YAG/V:YAG microchip laser
71 schema:pagination 1288-1294
72 schema:productId N5d89ed020f744188ab6b05454112f6b2
73 Nf6e714f72a2e49c68b7227a4c8038c4d
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034428841
75 https://doi.org/10.1134/s1054660x10110216
76 schema:sdDatePublished 2022-05-10T10:03
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Nf639ff8e98974a9fa1acdcd99b3fb64a
79 schema:url https://doi.org/10.1134/s1054660x10110216
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N5d89ed020f744188ab6b05454112f6b2 schema:name doi
84 schema:value 10.1134/s1054660x10110216
85 rdf:type schema:PropertyValue
86 N87ac8b0d86fb49dfbb2a584d8e9db3d5 rdf:first sg:person.01142353654.84
87 rdf:rest Nb92dee5609634a2e86d820ce5c5fb681
88 Nb92dee5609634a2e86d820ce5c5fb681 rdf:first sg:person.01343166110.38
89 rdf:rest Nd6833d4d88ec4d818bda5e3423af8e1e
90 Nd6833d4d88ec4d818bda5e3423af8e1e rdf:first sg:person.07723375227.28
91 rdf:rest Nfeab3a26f8114de785d2cac51ec36555
92 Ne6d0cb7343574b19b547409effd121fe schema:issueNumber 6
93 rdf:type schema:PublicationIssue
94 Nef50197d7e9841d4934605f015be8e40 rdf:first sg:person.0665675210.14
95 rdf:rest N87ac8b0d86fb49dfbb2a584d8e9db3d5
96 Nefae3414edd541f2ab3f95922d5390ab schema:volumeNumber 20
97 rdf:type schema:PublicationVolume
98 Nf639ff8e98974a9fa1acdcd99b3fb64a schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Nf6e714f72a2e49c68b7227a4c8038c4d schema:name dimensions_id
101 schema:value pub.1034428841
102 rdf:type schema:PropertyValue
103 Nfeab3a26f8114de785d2cac51ec36555 rdf:first sg:person.011316336227.12
104 rdf:rest rdf:nil
105 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
106 schema:name Physical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
109 schema:name Optical Physics
110 rdf:type schema:DefinedTerm
111 sg:journal.1030496 schema:issn 1054-660X
112 1555-6611
113 schema:name Laser Physics
114 schema:publisher Pleiades Publishing
115 rdf:type schema:Periodical
116 sg:person.011316336227.12 schema:affiliation grid-institutes:grid.447944.e
117 schema:familyName Škoda
118 schema:givenName V.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011316336227.12
120 rdf:type schema:Person
121 sg:person.01142353654.84 schema:affiliation grid-institutes:grid.6652.7
122 schema:familyName Novák
123 schema:givenName J.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142353654.84
125 rdf:type schema:Person
126 sg:person.01343166110.38 schema:affiliation grid-institutes:grid.6652.7
127 schema:familyName Jelínková
128 schema:givenName H.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343166110.38
130 rdf:type schema:Person
131 sg:person.0665675210.14 schema:affiliation grid-institutes:grid.6652.7
132 schema:familyName Šulc
133 schema:givenName J.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665675210.14
135 rdf:type schema:Person
136 sg:person.07723375227.28 schema:affiliation grid-institutes:grid.447944.e
137 schema:familyName Nejezchleb
138 schema:givenName K.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07723375227.28
140 rdf:type schema:Person
141 sg:pub.10.1007/978-1-4612-0643-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108501090
142 https://doi.org/10.1007/978-1-4612-0643-9
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-3-540-34838-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027314246
145 https://doi.org/10.1007/978-3-540-34838-2
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/978-3-662-14219-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023286628
148 https://doi.org/10.1007/978-3-662-14219-6
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00340-004-1526-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025658098
151 https://doi.org/10.1007/s00340-004-1526-2
152 rdf:type schema:CreativeWork
153 sg:pub.10.1134/s11490-008-4005-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039344470
154 https://doi.org/10.1134/s11490-008-4005-3
155 rdf:type schema:CreativeWork
156 grid-institutes:grid.447944.e schema:alternateName Crytur, Ltd. Turnov, Palackého 175, 511 01, Turnov, Czech Republic
157 schema:name Crytur, Ltd. Turnov, Palackého 175, 511 01, Turnov, Czech Republic
158 rdf:type schema:Organization
159 grid-institutes:grid.6652.7 schema:alternateName Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehová 7, 115 19, Prague 1, Czech Republic
160 schema:name Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehová 7, 115 19, Prague 1, Czech Republic
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...