Detection and spectral measurement of single photons in communication bands using up-conversion technology View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-05

AUTHORS

L. Ma, O. Slattery, X. Tang

ABSTRACT

Quantum information systems are commonly operated in conventional communication bands (1310 and 1550 nm) over an optical fiber to take advantage of low transmission loss. However, the detection and spectral measurement of single photons in these communication bands are limited due to high noise and low sensitivity of single photon detectors in the wavelength ranges. To demonstrate high efficiency detection and high sensitivity spectral measurement, we have implemented a single photon detector and a spectrometer based on frequency up-conversion technology. This detector and spectrometer uses a 5-cm periodically poled lithium niobate (PPLN) waveguide and a tunable pump laser around 1550 nm, to convert signal photons around 1310 to 710 nm. The converted photons are then detected by a silicon-based avalanche photodiode (APD). The overall detection efficiency of the single photon detector is as high as 32%, which is three times higher than commercial InGaAs APDs. The sensitivity of the spectrometer is measured to be −126 dBm, which is at least three orders-of-magnitude better than any commercial optical spectrum analyzer in this wavelength range. More... »

PAGES

1244-1250

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1054660x1009032x

DOI

http://dx.doi.org/10.1134/s1054660x1009032x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044940436


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., 20899, Gaithersburg, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "L.", 
        "id": "sg:person.01334560670.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334560670.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., 20899, Gaithersburg, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Slattery", 
        "givenName": "O.", 
        "id": "sg:person.011223067241.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011223067241.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., 20899, Gaithersburg, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "X.", 
        "id": "sg:person.01252425110.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252425110.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1367-2630/8/3/032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001872643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/8/3/032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001872643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2931070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006952348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340408235283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007852200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.16.003032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009159970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.734345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016520977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2007.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030466953", 
          "https://doi.org/10.1038/nphoton.2007.75"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.007247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031581724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.014395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048289011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.014395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048289011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.16.019557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050976623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.052311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050998635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.052311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050998635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.052311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050998635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1355-5111/9/2/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059133207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/4/045020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059134662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/4/045020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059134662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.161322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.30.001725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065222931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.30.001818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065222956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.33.002257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065226431"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-05", 
    "datePublishedReg": "2010-05-01", 
    "description": "Quantum information systems are commonly operated in conventional communication bands (1310 and 1550 nm) over an optical fiber to take advantage of low transmission loss. However, the detection and spectral measurement of single photons in these communication bands are limited due to high noise and low sensitivity of single photon detectors in the wavelength ranges. To demonstrate high efficiency detection and high sensitivity spectral measurement, we have implemented a single photon detector and a spectrometer based on frequency up-conversion technology. This detector and spectrometer uses a 5-cm periodically poled lithium niobate (PPLN) waveguide and a tunable pump laser around 1550 nm, to convert signal photons around 1310 to 710 nm. The converted photons are then detected by a silicon-based avalanche photodiode (APD). The overall detection efficiency of the single photon detector is as high as 32%, which is three times higher than commercial InGaAs APDs. The sensitivity of the spectrometer is measured to be \u2212126 dBm, which is at least three orders-of-magnitude better than any commercial optical spectrum analyzer in this wavelength range.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1054660x1009032x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1030496", 
        "issn": [
          "1054-660X", 
          "1555-6611"
        ], 
        "name": "Laser Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Detection and spectral measurement of single photons in communication bands using up-conversion technology", 
    "pagination": "1244-1250", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d610c9c53bd4100678f2cf449c64d6b9c1367ac15006ad6ed1bf570a9d8f6643"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1054660x1009032x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044940436"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1054660x1009032x", 
      "https://app.dimensions.ai/details/publication/pub.1044940436"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54307_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1054660X1009032X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1054660x1009032x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1054660x1009032x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1054660x1009032x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1054660x1009032x'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1054660x1009032x schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nfb454cb9e8e1412185e52317ae137273
4 schema:citation sg:pub.10.1038/nphoton.2007.75
5 https://doi.org/10.1063/1.2931070
6 https://doi.org/10.1080/09500340408235283
7 https://doi.org/10.1088/1355-5111/9/2/004
8 https://doi.org/10.1088/1367-2630/11/4/045020
9 https://doi.org/10.1088/1367-2630/8/3/032
10 https://doi.org/10.1103/physreva.72.052311
11 https://doi.org/10.1109/3.161322
12 https://doi.org/10.1117/12.734345
13 https://doi.org/10.1364/oe.15.007247
14 https://doi.org/10.1364/oe.16.003032
15 https://doi.org/10.1364/oe.16.019557
16 https://doi.org/10.1364/oe.17.014395
17 https://doi.org/10.1364/ol.30.001725
18 https://doi.org/10.1364/ol.30.001818
19 https://doi.org/10.1364/ol.33.002257
20 schema:datePublished 2010-05
21 schema:datePublishedReg 2010-05-01
22 schema:description Quantum information systems are commonly operated in conventional communication bands (1310 and 1550 nm) over an optical fiber to take advantage of low transmission loss. However, the detection and spectral measurement of single photons in these communication bands are limited due to high noise and low sensitivity of single photon detectors in the wavelength ranges. To demonstrate high efficiency detection and high sensitivity spectral measurement, we have implemented a single photon detector and a spectrometer based on frequency up-conversion technology. This detector and spectrometer uses a 5-cm periodically poled lithium niobate (PPLN) waveguide and a tunable pump laser around 1550 nm, to convert signal photons around 1310 to 710 nm. The converted photons are then detected by a silicon-based avalanche photodiode (APD). The overall detection efficiency of the single photon detector is as high as 32%, which is three times higher than commercial InGaAs APDs. The sensitivity of the spectrometer is measured to be −126 dBm, which is at least three orders-of-magnitude better than any commercial optical spectrum analyzer in this wavelength range.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N8905bf6d50594add83bcd2f185ed3849
27 Nedf847adddd8403686cd8da8d1f67f77
28 sg:journal.1030496
29 schema:name Detection and spectral measurement of single photons in communication bands using up-conversion technology
30 schema:pagination 1244-1250
31 schema:productId N7bb82178a2684eb4bd8c8e14a34741a6
32 Nc8ad3f4fa6ce40bc9792ce22db94a061
33 Nd6029baae8b140dbbc65a3627eb49cb0
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044940436
35 https://doi.org/10.1134/s1054660x1009032x
36 schema:sdDatePublished 2019-04-11T10:17
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N02ff148690754a07827b06921e557bc5
39 schema:url http://link.springer.com/10.1134%2FS1054660X1009032X
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N02ff148690754a07827b06921e557bc5 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N12a9cbe05e4940f0bf5622a4cdc5ddbb rdf:first sg:person.011223067241.11
46 rdf:rest Ncd028d0a45e548c287729d9e95b7d365
47 N7bb82178a2684eb4bd8c8e14a34741a6 schema:name dimensions_id
48 schema:value pub.1044940436
49 rdf:type schema:PropertyValue
50 N8905bf6d50594add83bcd2f185ed3849 schema:issueNumber 5
51 rdf:type schema:PublicationIssue
52 Nc8ad3f4fa6ce40bc9792ce22db94a061 schema:name doi
53 schema:value 10.1134/s1054660x1009032x
54 rdf:type schema:PropertyValue
55 Ncd028d0a45e548c287729d9e95b7d365 rdf:first sg:person.01252425110.87
56 rdf:rest rdf:nil
57 Nd6029baae8b140dbbc65a3627eb49cb0 schema:name readcube_id
58 schema:value d610c9c53bd4100678f2cf449c64d6b9c1367ac15006ad6ed1bf570a9d8f6643
59 rdf:type schema:PropertyValue
60 Nedf847adddd8403686cd8da8d1f67f77 schema:volumeNumber 20
61 rdf:type schema:PublicationVolume
62 Nfb454cb9e8e1412185e52317ae137273 rdf:first sg:person.01334560670.18
63 rdf:rest N12a9cbe05e4940f0bf5622a4cdc5ddbb
64 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
65 schema:name Physical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
68 schema:name Optical Physics
69 rdf:type schema:DefinedTerm
70 sg:journal.1030496 schema:issn 1054-660X
71 1555-6611
72 schema:name Laser Physics
73 rdf:type schema:Periodical
74 sg:person.011223067241.11 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
75 schema:familyName Slattery
76 schema:givenName O.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011223067241.11
78 rdf:type schema:Person
79 sg:person.01252425110.87 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
80 schema:familyName Tang
81 schema:givenName X.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252425110.87
83 rdf:type schema:Person
84 sg:person.01334560670.18 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
85 schema:familyName Ma
86 schema:givenName L.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334560670.18
88 rdf:type schema:Person
89 sg:pub.10.1038/nphoton.2007.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030466953
90 https://doi.org/10.1038/nphoton.2007.75
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1063/1.2931070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006952348
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1080/09500340408235283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007852200
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1088/1355-5111/9/2/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059133207
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1088/1367-2630/11/4/045020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059134662
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1088/1367-2630/8/3/032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001872643
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physreva.72.052311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050998635
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/3.161322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146921
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1117/12.734345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016520977
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1364/oe.15.007247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031581724
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1364/oe.16.003032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009159970
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1364/oe.16.019557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050976623
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1364/oe.17.014395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048289011
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1364/ol.30.001725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065222931
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1364/ol.30.001818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065222956
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1364/ol.33.002257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065226431
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.94225.38 schema:alternateName National Institute of Standards and Technology
123 schema:name Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., 20899, Gaithersburg, MD, USA
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...