On the analogy between a single atom and an optical resonator View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01

AUTHORS

S. Heugel, A. S. Villar, M. Sondermann, U. Peschel, G. Leuchs

ABSTRACT

A single atom in free space can have a strong influence on a light beam and a single photon can have a strong effect on a single atom in free space. Regarding this interaction, two conceptually different questions can be asked: can a single atom fully absorb a single photon and can a single atom fully reflect a light beam. The conditions for achieving the full effect in either case are different. Here we discuss related questions in the context of an optical resonator. When shaping a laser pulse properly it will be fully absorbed by an optical resonator, i.e., no light will be reflected and all the pulse energy will accumulate inside the resonator before it starts leaking out. We show in detail that in this case the temporal pulse shape has to match the time-reversed pulse obtained by the cavity’s free decay. On the other hand a resonator, made of highly reflecting mirrors which normally reflect a large portion of any incident light, may fully transmit the light, as long as the light is narrow band and resonant with the cavity. The analogy is the single atom—normally letting most of the light pass—which under special conditions may fully reflect the incident light beam. Using this analogy we are able to study the effects of practical experimental limitations in the atom-photon coupling, such as finite pulses, bandwidths, and solid angle coverage, and to use the optical resonator as a test bed for the implementation of the quantum experiment. More... »

PAGES

100-106

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1054660x09170095

DOI

http://dx.doi.org/10.1134/s1054660x09170095

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013694408


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Max Planck Institute for the Science of Light, G\u00fcnther-Scharowsky-Str. 1/Bau 24, 91058, Erlangen, Germany", 
            "Institute of Optics, Information and Photonics, University of Erlangen-Nuremberg, Staudtstr. 7/B2, 91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heugel", 
        "givenName": "S.", 
        "id": "sg:person.013517026454.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517026454.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Science of Light", 
          "id": "https://www.grid.ac/institutes/grid.419562.d", 
          "name": [
            "Max Planck Institute for the Science of Light, G\u00fcnther-Scharowsky-Str. 1/Bau 24, 91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Villar", 
        "givenName": "A. S.", 
        "id": "sg:person.01131330060.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131330060.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Max Planck Institute for the Science of Light, G\u00fcnther-Scharowsky-Str. 1/Bau 24, 91058, Erlangen, Germany", 
            "Institute of Optics, Information and Photonics, University of Erlangen-Nuremberg, Staudtstr. 7/B2, 91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sondermann", 
        "givenName": "M.", 
        "id": "sg:person.015145557465.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015145557465.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Max Planck Institute for the Science of Light, G\u00fcnther-Scharowsky-Str. 1/Bau 24, 91058, Erlangen, Germany", 
            "Institute of Optics, Information and Photonics, University of Erlangen-Nuremberg, Staudtstr. 7/B2, 91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peschel", 
        "givenName": "U.", 
        "id": "sg:person.0654607204.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654607204.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Max Planck Institute for the Science of Light, G\u00fcnther-Scharowsky-Str. 1/Bau 24, 91058, Erlangen, Germany", 
            "Institute of Optics, Information and Photonics, University of Erlangen-Nuremberg, Staudtstr. 7/B2, 91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leuchs", 
        "givenName": "G.", 
        "id": "sg:person.01336050020.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336050020.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/713819474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002662758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.250502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003470601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.250502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003470601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/86/14007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007417842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01336768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008837145", 
          "https://doi.org/10.1007/bf01336768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0030-4018(99)00729-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009035897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012414281", 
          "https://doi.org/10.1038/nphys812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(91)90056-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016201780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(91)90056-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016201780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-007-2859-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022528656", 
          "https://doi.org/10.1007/s00340-007-2859-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-007-2859-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022528656", 
          "https://doi.org/10.1007/s00340-007-2859-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.043813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023327974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.043813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023327974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.180404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023927706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.180404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023927706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.093603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030200443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.093603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030200443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030817319", 
          "https://doi.org/10.1038/nphys1096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.2937903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031696634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(83)90256-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038262835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(83)90256-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038262835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1054660x07070055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040211067", 
          "https://doi.org/10.1134/s1054660x07070055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044658333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044658333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/4/043011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045029202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/4/043011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045029202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.023809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045946900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.023809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045946900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0717255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0717255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.1986.1072856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061305230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.18.002153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065159578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.12.000389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065211418"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-01", 
    "datePublishedReg": "2010-01-01", 
    "description": "A single atom in free space can have a strong influence on a light beam and a single photon can have a strong effect on a single atom in free space. Regarding this interaction, two conceptually different questions can be asked: can a single atom fully absorb a single photon and can a single atom fully reflect a light beam. The conditions for achieving the full effect in either case are different. Here we discuss related questions in the context of an optical resonator. When shaping a laser pulse properly it will be fully absorbed by an optical resonator, i.e., no light will be reflected and all the pulse energy will accumulate inside the resonator before it starts leaking out. We show in detail that in this case the temporal pulse shape has to match the time-reversed pulse obtained by the cavity\u2019s free decay. On the other hand a resonator, made of highly reflecting mirrors which normally reflect a large portion of any incident light, may fully transmit the light, as long as the light is narrow band and resonant with the cavity. The analogy is the single atom\u2014normally letting most of the light pass\u2014which under special conditions may fully reflect the incident light beam. Using this analogy we are able to study the effects of practical experimental limitations in the atom-photon coupling, such as finite pulses, bandwidths, and solid angle coverage, and to use the optical resonator as a test bed for the implementation of the quantum experiment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1054660x09170095", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030496", 
        "issn": [
          "1054-660X", 
          "1555-6611"
        ], 
        "name": "Laser Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "On the analogy between a single atom and an optical resonator", 
    "pagination": "100-106", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "413cd71cddd3ec5afaf17c936a8bfffd848de447b6a437ca09707b94b834c6cd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1054660x09170095"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013694408"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1054660x09170095", 
      "https://app.dimensions.ai/details/publication/pub.1013694408"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64100_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S1054660X09170095"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1054660x09170095'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1054660x09170095'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1054660x09170095'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1054660x09170095'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1054660x09170095 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N9c1dc71d39fc49c3a1dd2badda97674a
4 schema:citation sg:pub.10.1007/bf01336768
5 sg:pub.10.1007/s00340-007-2859-4
6 sg:pub.10.1038/nphys1096
7 sg:pub.10.1038/nphys812
8 sg:pub.10.1134/s1054660x07070055
9 https://doi.org/10.1016/0030-4018(83)90256-0
10 https://doi.org/10.1016/0030-4018(91)90056-j
11 https://doi.org/10.1016/s0030-4018(99)00729-4
12 https://doi.org/10.1021/nl0717255
13 https://doi.org/10.1080/713819474
14 https://doi.org/10.1088/1367-2630/11/4/043011
15 https://doi.org/10.1103/physreva.63.023809
16 https://doi.org/10.1103/physreva.69.043813
17 https://doi.org/10.1103/physrevlett.100.093603
18 https://doi.org/10.1103/physrevlett.101.180404
19 https://doi.org/10.1103/physrevlett.75.4710
20 https://doi.org/10.1103/physrevlett.93.250502
21 https://doi.org/10.1109/jqe.1986.1072856
22 https://doi.org/10.1119/1.2937903
23 https://doi.org/10.1209/0295-5075/86/14007
24 https://doi.org/10.1364/josaa.18.002153
25 https://doi.org/10.1364/ol.12.000389
26 schema:datePublished 2010-01
27 schema:datePublishedReg 2010-01-01
28 schema:description A single atom in free space can have a strong influence on a light beam and a single photon can have a strong effect on a single atom in free space. Regarding this interaction, two conceptually different questions can be asked: can a single atom fully absorb a single photon and can a single atom fully reflect a light beam. The conditions for achieving the full effect in either case are different. Here we discuss related questions in the context of an optical resonator. When shaping a laser pulse properly it will be fully absorbed by an optical resonator, i.e., no light will be reflected and all the pulse energy will accumulate inside the resonator before it starts leaking out. We show in detail that in this case the temporal pulse shape has to match the time-reversed pulse obtained by the cavity’s free decay. On the other hand a resonator, made of highly reflecting mirrors which normally reflect a large portion of any incident light, may fully transmit the light, as long as the light is narrow band and resonant with the cavity. The analogy is the single atom—normally letting most of the light pass—which under special conditions may fully reflect the incident light beam. Using this analogy we are able to study the effects of practical experimental limitations in the atom-photon coupling, such as finite pulses, bandwidths, and solid angle coverage, and to use the optical resonator as a test bed for the implementation of the quantum experiment.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N65f32af82e8d4f6ea19c508d80cbd81b
33 N7688ef16eff54b6aa1cc52680458813d
34 sg:journal.1030496
35 schema:name On the analogy between a single atom and an optical resonator
36 schema:pagination 100-106
37 schema:productId N1c87b233c8874a90a9bdfa44fa0d5172
38 N4c7932e7e7a2430cb18e8dfd50491f9e
39 Nd403bf600e004b3082dce08e2a0e043d
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013694408
41 https://doi.org/10.1134/s1054660x09170095
42 schema:sdDatePublished 2019-04-11T09:24
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nb8e94bece0fc439e841584dcec8a523f
45 schema:url http://link.springer.com/10.1134/S1054660X09170095
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N1c87b233c8874a90a9bdfa44fa0d5172 schema:name doi
50 schema:value 10.1134/s1054660x09170095
51 rdf:type schema:PropertyValue
52 N351fb33060fe4f93910fdf5744e6b88a rdf:first sg:person.01336050020.20
53 rdf:rest rdf:nil
54 N4c7932e7e7a2430cb18e8dfd50491f9e schema:name dimensions_id
55 schema:value pub.1013694408
56 rdf:type schema:PropertyValue
57 N61d5c85b7754400e95f8e3ac62224dd1 rdf:first sg:person.015145557465.40
58 rdf:rest Ndd1f96b50f7e4baa81d58db983096588
59 N65f32af82e8d4f6ea19c508d80cbd81b schema:volumeNumber 20
60 rdf:type schema:PublicationVolume
61 N7688ef16eff54b6aa1cc52680458813d schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 N9c1dc71d39fc49c3a1dd2badda97674a rdf:first sg:person.013517026454.82
64 rdf:rest Ncb80f5e6433a4eccbc73296241fc2af9
65 Nb8e94bece0fc439e841584dcec8a523f schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Ncb80f5e6433a4eccbc73296241fc2af9 rdf:first sg:person.01131330060.12
68 rdf:rest N61d5c85b7754400e95f8e3ac62224dd1
69 Nd403bf600e004b3082dce08e2a0e043d schema:name readcube_id
70 schema:value 413cd71cddd3ec5afaf17c936a8bfffd848de447b6a437ca09707b94b834c6cd
71 rdf:type schema:PropertyValue
72 Ndd1f96b50f7e4baa81d58db983096588 rdf:first sg:person.0654607204.92
73 rdf:rest N351fb33060fe4f93910fdf5744e6b88a
74 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
75 schema:name Physical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
78 schema:name Optical Physics
79 rdf:type schema:DefinedTerm
80 sg:journal.1030496 schema:issn 1054-660X
81 1555-6611
82 schema:name Laser Physics
83 rdf:type schema:Periodical
84 sg:person.01131330060.12 schema:affiliation https://www.grid.ac/institutes/grid.419562.d
85 schema:familyName Villar
86 schema:givenName A. S.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131330060.12
88 rdf:type schema:Person
89 sg:person.01336050020.20 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
90 schema:familyName Leuchs
91 schema:givenName G.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336050020.20
93 rdf:type schema:Person
94 sg:person.013517026454.82 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
95 schema:familyName Heugel
96 schema:givenName S.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517026454.82
98 rdf:type schema:Person
99 sg:person.015145557465.40 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
100 schema:familyName Sondermann
101 schema:givenName M.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015145557465.40
103 rdf:type schema:Person
104 sg:person.0654607204.92 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
105 schema:familyName Peschel
106 schema:givenName U.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654607204.92
108 rdf:type schema:Person
109 sg:pub.10.1007/bf01336768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008837145
110 https://doi.org/10.1007/bf01336768
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00340-007-2859-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022528656
113 https://doi.org/10.1007/s00340-007-2859-4
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nphys1096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030817319
116 https://doi.org/10.1038/nphys1096
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nphys812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012414281
119 https://doi.org/10.1038/nphys812
120 rdf:type schema:CreativeWork
121 sg:pub.10.1134/s1054660x07070055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040211067
122 https://doi.org/10.1134/s1054660x07070055
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0030-4018(83)90256-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038262835
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0030-4018(91)90056-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1016201780
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0030-4018(99)00729-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009035897
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1021/nl0717255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217399
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/713819474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002662758
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1088/1367-2630/11/4/043011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045029202
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physreva.63.023809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045946900
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physreva.69.043813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023327974
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.100.093603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030200443
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.101.180404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023927706
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.75.4710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044658333
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.93.250502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003470601
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/jqe.1986.1072856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061305230
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1119/1.2937903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031696634
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1209/0295-5075/86/14007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007417842
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1364/josaa.18.002153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065159578
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1364/ol.12.000389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065211418
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.419562.d schema:alternateName Max Planck Institute for the Science of Light
159 schema:name Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1/Bau 24, 91058, Erlangen, Germany
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.5330.5 schema:alternateName University of Erlangen-Nuremberg
162 schema:name Institute of Optics, Information and Photonics, University of Erlangen-Nuremberg, Staudtstr. 7/B2, 91058, Erlangen, Germany
163 Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1/Bau 24, 91058, Erlangen, Germany
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...