Terahertz-wave generation with periodically inverted gallium arsenide View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-02

AUTHORS

K. L. Vodopyanov

ABSTRACT

We overview methods of THz-wave generation using frequency down-conversion in GaAs with periodically-inverted crystalline orientation. First, we compare different nonlinear-optical materials suitable for THz generation, analyze THz generation process in quasi-phase-matched crystals and consider theoretical limits of optical-to-THz conversion. Then, we review single-pass optical rectification experiments with femtosecond pump pulses, performed in periodically-inverted GaAs, where monochromatic THz output tunable in the range 0.9–3.0 THz was produced. Finally, we describe a novel approach to create a compact highly efficient tunable (0.5–3.5 THz) room temperature monochromatic THz source, based on the concept of intracavity THz generation via resonantly-enhanced difference frequency mixing. This approach allowed generating of 1 mW of average THz power, potentially scalable to 10–100 mW. More... »

PAGES

305-321

Journal

TITLE

Laser Physics

ISSUE

2

VOLUME

19

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1054660x09020248

DOI

http://dx.doi.org/10.1134/s1054660x09020248

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041608023


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Ginzton Laboratory, Stanford University, 94305, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vodopyanov", 
        "givenName": "K. L.", 
        "id": "sg:person.0762373011.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762373011.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.optcom.2004.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003299157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2007.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010034031", 
          "https://doi.org/10.1038/nphoton.2007.3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364007050025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011591124", 
          "https://doi.org/10.1134/s0021364007050025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3540079459_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012009337", 
          "https://doi.org/10.1007/3540079459_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.004439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020859798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046931419", 
          "https://doi.org/10.1038/nmat708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046931419", 
          "https://doi.org/10.1038/nmat708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:19931293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056779904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:20040210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056794254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.108426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057655994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.111922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057659480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.115828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057680047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.124124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057688263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.126390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057690497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1389326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057701994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1592889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057723783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1653935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057731961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1654255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057732281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1654785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057732811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1654788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057732814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1813645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057824289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2174832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057842889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2357551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057851891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2367661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057853143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2734374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057861326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.88198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058127472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.6954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.6954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.15.999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060768581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.15.999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060768581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.187402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.187402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/22.989974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061127633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.161322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.511545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061148559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmtt.1974.1128412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061702200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.9.1361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063090838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.16.001481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065169352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.24.002509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065172171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.9.000405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065178133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.001582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065182847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.002263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065182940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.005476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065183389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.007909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065183728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.24.000202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065218419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.25.001210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065219336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.26.000563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065219684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.27.001454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065220529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.29.002046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065222084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.30.002805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065223241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.30.002927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065223273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.32.000668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.32.001284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.13.005762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065244358"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-02", 
    "datePublishedReg": "2009-02-01", 
    "description": "We overview methods of THz-wave generation using frequency down-conversion in GaAs with periodically-inverted crystalline orientation. First, we compare different nonlinear-optical materials suitable for THz generation, analyze THz generation process in quasi-phase-matched crystals and consider theoretical limits of optical-to-THz conversion. Then, we review single-pass optical rectification experiments with femtosecond pump pulses, performed in periodically-inverted GaAs, where monochromatic THz output tunable in the range 0.9\u20133.0 THz was produced. Finally, we describe a novel approach to create a compact highly efficient tunable (0.5\u20133.5 THz) room temperature monochromatic THz source, based on the concept of intracavity THz generation via resonantly-enhanced difference frequency mixing. This approach allowed generating of 1 mW of average THz power, potentially scalable to 10\u2013100 mW.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1054660x09020248", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1030496", 
        "issn": [
          "1054-660X", 
          "1555-6611"
        ], 
        "name": "Laser Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Terahertz-wave generation with periodically inverted gallium arsenide", 
    "pagination": "305-321", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c634d19c017ae77fbd4566f2af3eb42cea0df920327140abd21181c31dceac53"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1054660x09020248"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041608023"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1054660x09020248", 
      "https://app.dimensions.ai/details/publication/pub.1041608023"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S1054660X09020248"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1054660x09020248'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1054660x09020248'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1054660x09020248'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1054660x09020248'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      79 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1054660x09020248 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nefaf4af702e04c1e84cb09fe47c0d8d7
4 schema:citation sg:pub.10.1007/3540079459_8
5 sg:pub.10.1038/nmat708
6 sg:pub.10.1038/nphoton.2007.3
7 sg:pub.10.1134/s0021364007050025
8 https://doi.org/10.1016/j.optcom.2004.01.016
9 https://doi.org/10.1049/el:19931293
10 https://doi.org/10.1049/el:20040210
11 https://doi.org/10.1063/1.108426
12 https://doi.org/10.1063/1.111922
13 https://doi.org/10.1063/1.115828
14 https://doi.org/10.1063/1.124124
15 https://doi.org/10.1063/1.126390
16 https://doi.org/10.1063/1.1389326
17 https://doi.org/10.1063/1.1592889
18 https://doi.org/10.1063/1.1653935
19 https://doi.org/10.1063/1.1654255
20 https://doi.org/10.1063/1.1654785
21 https://doi.org/10.1063/1.1654788
22 https://doi.org/10.1063/1.1813645
23 https://doi.org/10.1063/1.2174832
24 https://doi.org/10.1063/1.2357551
25 https://doi.org/10.1063/1.2367661
26 https://doi.org/10.1063/1.2734374
27 https://doi.org/10.1063/1.88198
28 https://doi.org/10.1103/physrevb.33.6954
29 https://doi.org/10.1103/physrevlett.15.999
30 https://doi.org/10.1103/physrevlett.26.387
31 https://doi.org/10.1103/physrevlett.70.1236
32 https://doi.org/10.1103/physrevlett.96.187402
33 https://doi.org/10.1109/22.989974
34 https://doi.org/10.1109/3.161322
35 https://doi.org/10.1109/3.511545
36 https://doi.org/10.1109/tmtt.1974.1128412
37 https://doi.org/10.1143/jjap.9.1361
38 https://doi.org/10.1364/josab.16.001481
39 https://doi.org/10.1364/josab.24.002509
40 https://doi.org/10.1364/josab.9.000405
41 https://doi.org/10.1364/oe.14.001582
42 https://doi.org/10.1364/oe.14.002263
43 https://doi.org/10.1364/oe.14.004439
44 https://doi.org/10.1364/oe.14.005476
45 https://doi.org/10.1364/oe.14.007909
46 https://doi.org/10.1364/ol.24.000202
47 https://doi.org/10.1364/ol.25.001210
48 https://doi.org/10.1364/ol.26.000563
49 https://doi.org/10.1364/ol.27.001454
50 https://doi.org/10.1364/ol.29.002046
51 https://doi.org/10.1364/ol.30.002805
52 https://doi.org/10.1364/ol.30.002927
53 https://doi.org/10.1364/ol.32.000668
54 https://doi.org/10.1364/ol.32.001284
55 https://doi.org/10.1364/opex.13.005762
56 schema:datePublished 2009-02
57 schema:datePublishedReg 2009-02-01
58 schema:description We overview methods of THz-wave generation using frequency down-conversion in GaAs with periodically-inverted crystalline orientation. First, we compare different nonlinear-optical materials suitable for THz generation, analyze THz generation process in quasi-phase-matched crystals and consider theoretical limits of optical-to-THz conversion. Then, we review single-pass optical rectification experiments with femtosecond pump pulses, performed in periodically-inverted GaAs, where monochromatic THz output tunable in the range 0.9–3.0 THz was produced. Finally, we describe a novel approach to create a compact highly efficient tunable (0.5–3.5 THz) room temperature monochromatic THz source, based on the concept of intracavity THz generation via resonantly-enhanced difference frequency mixing. This approach allowed generating of 1 mW of average THz power, potentially scalable to 10–100 mW.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree false
62 schema:isPartOf Nd49bb3579f164ed29914f41185cf639d
63 Ndea86ab60dc443d9b890f6ce8d70d002
64 sg:journal.1030496
65 schema:name Terahertz-wave generation with periodically inverted gallium arsenide
66 schema:pagination 305-321
67 schema:productId N0c19332c54d244b6bfa2f7efebecfba3
68 N254c6a283a944489bc5e20258511f159
69 N85b931db4ef646f89dbab4e236cfdf1b
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041608023
71 https://doi.org/10.1134/s1054660x09020248
72 schema:sdDatePublished 2019-04-11T00:14
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N500874f1db4847a8b75ea1ef095232c5
75 schema:url http://link.springer.com/10.1134/S1054660X09020248
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N0c19332c54d244b6bfa2f7efebecfba3 schema:name dimensions_id
80 schema:value pub.1041608023
81 rdf:type schema:PropertyValue
82 N254c6a283a944489bc5e20258511f159 schema:name readcube_id
83 schema:value c634d19c017ae77fbd4566f2af3eb42cea0df920327140abd21181c31dceac53
84 rdf:type schema:PropertyValue
85 N500874f1db4847a8b75ea1ef095232c5 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N85b931db4ef646f89dbab4e236cfdf1b schema:name doi
88 schema:value 10.1134/s1054660x09020248
89 rdf:type schema:PropertyValue
90 Nd49bb3579f164ed29914f41185cf639d schema:volumeNumber 19
91 rdf:type schema:PublicationVolume
92 Ndea86ab60dc443d9b890f6ce8d70d002 schema:issueNumber 2
93 rdf:type schema:PublicationIssue
94 Nefaf4af702e04c1e84cb09fe47c0d8d7 rdf:first sg:person.0762373011.70
95 rdf:rest rdf:nil
96 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
100 schema:name Optical Physics
101 rdf:type schema:DefinedTerm
102 sg:journal.1030496 schema:issn 1054-660X
103 1555-6611
104 schema:name Laser Physics
105 rdf:type schema:Periodical
106 sg:person.0762373011.70 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
107 schema:familyName Vodopyanov
108 schema:givenName K. L.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762373011.70
110 rdf:type schema:Person
111 sg:pub.10.1007/3540079459_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012009337
112 https://doi.org/10.1007/3540079459_8
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nmat708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046931419
115 https://doi.org/10.1038/nmat708
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nphoton.2007.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010034031
118 https://doi.org/10.1038/nphoton.2007.3
119 rdf:type schema:CreativeWork
120 sg:pub.10.1134/s0021364007050025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011591124
121 https://doi.org/10.1134/s0021364007050025
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.optcom.2004.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003299157
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1049/el:19931293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056779904
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1049/el:20040210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056794254
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.108426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057655994
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.111922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057659480
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.115828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057680047
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.124124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057688263
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.126390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057690497
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.1389326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057701994
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.1592889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057723783
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.1653935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057731961
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.1654255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057732281
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.1654785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057732811
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.1654788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057732814
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.1813645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057824289
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.2174832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057842889
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.2357551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057851891
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1063/1.2367661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057853143
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.2734374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057861326
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.88198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058127472
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevb.33.6954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060540159
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.15.999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060768581
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.26.387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060774566
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.70.1236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806375
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.96.187402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832246
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/22.989974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061127633
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/3.161322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146921
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/3.511545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061148559
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tmtt.1974.1128412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061702200
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1143/jjap.9.1361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063090838
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1364/josab.16.001481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065169352
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1364/josab.24.002509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065172171
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1364/josab.9.000405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065178133
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1364/oe.14.001582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065182847
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1364/oe.14.002263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065182940
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1364/oe.14.004439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020859798
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1364/oe.14.005476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065183389
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1364/oe.14.007909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065183728
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1364/ol.24.000202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065218419
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1364/ol.25.001210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065219336
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1364/ol.26.000563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065219684
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1364/ol.27.001454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065220529
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1364/ol.29.002046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065222084
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1364/ol.30.002805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065223241
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1364/ol.30.002927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065223273
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1364/ol.32.000668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224701
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1364/ol.32.001284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224897
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1364/opex.13.005762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065244358
218 rdf:type schema:CreativeWork
219 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
220 schema:name Ginzton Laboratory, Stanford University, 94305, Stanford, CA, USA
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...