Exponential decrease of thermodynamic functions of photon gas in cubic and spherical cavities with low adiabatic invariants View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-07

AUTHORS

V. I. Vlad, N. Ionescu-Pallas

ABSTRACT

The Planck radiation spectrum of ideal cubic and spherical cavities with low adiabatic invariants, γ = TV1/3, is discrete and strongly dependent on the cavity geometry and temperature. This behavior is a consequence of the random distribution of the state weights in the cubic cavity and of the random overlapping of successive multiplet components, in the case of a spherical cavity. The total energy density of cavities with low adiabatic invariant, γ (obtained by summing up the exact contributions of the eigenvalues and their weights) no longer obeys the Stefan-Boltzmann law. The new law includes a corrective factor depending on γ, which imposes an exponential decrease of the total energy density to zero, when γ → 0. A similar behavior is demonstrated for specific heat and for all other thermodynamic functions of photon gas in cubic and spherical cavities with low adiabatic invariants. This special quantum regime, defined by the limits of principal quantum numbers or by adiabatic invariants, is shown to be similar for cubic and spherical cavities. More... »

PAGES

1001-1006

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1054660x07070158

DOI

http://dx.doi.org/10.1134/s1054660x07070158

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009116161


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "NILPRP Department of Lasers, Institute of Atomic Physics, P.O. Box MG-36, Bucharest-Magurele, Romania", 
          "id": "http://www.grid.ac/institutes/grid.425264.3", 
          "name": [
            "NILPRP Department of Lasers, Institute of Atomic Physics, P.O. Box MG-36, Bucharest-Magurele, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vlad", 
        "givenName": "V. I.", 
        "id": "sg:person.0650755673.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650755673.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NILPRP Department of Lasers, Institute of Atomic Physics, P.O. Box MG-36, Bucharest-Magurele, Romania", 
          "id": "http://www.grid.ac/institutes/grid.425264.3", 
          "name": [
            "NILPRP Department of Lasers, Institute of Atomic Physics, P.O. Box MG-36, Bucharest-Magurele, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ionescu-Pallas", 
        "givenName": "N.", 
        "id": "sg:person.013264104343.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264104343.10"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-07", 
    "datePublishedReg": "2007-07-01", 
    "description": "The Planck radiation spectrum of ideal cubic and spherical cavities with low adiabatic invariants, \u03b3 = TV1/3, is discrete and strongly dependent on the cavity geometry and temperature. This behavior is a consequence of the random distribution of the state weights in the cubic cavity and of the random overlapping of successive multiplet components, in the case of a spherical cavity. The total energy density of cavities with low adiabatic invariant, \u03b3 (obtained by summing up the exact contributions of the eigenvalues and their weights) no longer obeys the Stefan-Boltzmann law. The new law includes a corrective factor depending on \u03b3, which imposes an exponential decrease of the total energy density to zero, when \u03b3 \u2192 0. A similar behavior is demonstrated for specific heat and for all other thermodynamic functions of photon gas in cubic and spherical cavities with low adiabatic invariants. This special quantum regime, defined by the limits of principal quantum numbers or by adiabatic invariants, is shown to be similar for cubic and spherical cavities.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1054660x07070158", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1030496", 
        "issn": [
          "1054-660X", 
          "1555-6611"
        ], 
        "name": "Laser Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "adiabatic invariant", 
      "total energy density", 
      "photon gas", 
      "Planck radiation spectrum", 
      "principal quantum number", 
      "radiation spectrum", 
      "energy density", 
      "Stefan-Boltzmann law", 
      "quantum regime", 
      "quantum numbers", 
      "spherical cavity", 
      "multiplet components", 
      "exponential decrease", 
      "cavity geometry", 
      "random overlapping", 
      "specific heat", 
      "cavity", 
      "density", 
      "similar behavior", 
      "thermodynamic functions", 
      "gas", 
      "spectra", 
      "random distribution", 
      "corrective factor", 
      "regime", 
      "invariants", 
      "geometry", 
      "limit", 
      "temperature", 
      "distribution", 
      "law", 
      "decrease", 
      "function", 
      "behavior", 
      "weight", 
      "overlapping", 
      "components", 
      "cases", 
      "factors", 
      "consequences", 
      "state weights", 
      "heat", 
      "number", 
      "new law", 
      "cubic cavity", 
      "low adiabatic invariants", 
      "successive multiplet components", 
      "special quantum regime"
    ], 
    "name": "Exponential decrease of thermodynamic functions of photon gas in cubic and spherical cavities with low adiabatic invariants", 
    "pagination": "1001-1006", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009116161"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1054660x07070158"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1054660x07070158", 
      "https://app.dimensions.ai/details/publication/pub.1009116161"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_446.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1054660x07070158"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1054660x07070158'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1054660x07070158'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1054660x07070158'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1054660x07070158'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      74 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1054660x07070158 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nf00f9e3e2b494c659392d29e05163a5d
4 schema:datePublished 2007-07
5 schema:datePublishedReg 2007-07-01
6 schema:description The Planck radiation spectrum of ideal cubic and spherical cavities with low adiabatic invariants, γ = TV1/3, is discrete and strongly dependent on the cavity geometry and temperature. This behavior is a consequence of the random distribution of the state weights in the cubic cavity and of the random overlapping of successive multiplet components, in the case of a spherical cavity. The total energy density of cavities with low adiabatic invariant, γ (obtained by summing up the exact contributions of the eigenvalues and their weights) no longer obeys the Stefan-Boltzmann law. The new law includes a corrective factor depending on γ, which imposes an exponential decrease of the total energy density to zero, when γ → 0. A similar behavior is demonstrated for specific heat and for all other thermodynamic functions of photon gas in cubic and spherical cavities with low adiabatic invariants. This special quantum regime, defined by the limits of principal quantum numbers or by adiabatic invariants, is shown to be similar for cubic and spherical cavities.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N013c794b367248ef850727958a8864bb
11 N0298a4ff1e1f40dbb18f46eacca071ec
12 sg:journal.1030496
13 schema:keywords Planck radiation spectrum
14 Stefan-Boltzmann law
15 adiabatic invariant
16 behavior
17 cases
18 cavity
19 cavity geometry
20 components
21 consequences
22 corrective factor
23 cubic cavity
24 decrease
25 density
26 distribution
27 energy density
28 exponential decrease
29 factors
30 function
31 gas
32 geometry
33 heat
34 invariants
35 law
36 limit
37 low adiabatic invariants
38 multiplet components
39 new law
40 number
41 overlapping
42 photon gas
43 principal quantum number
44 quantum numbers
45 quantum regime
46 radiation spectrum
47 random distribution
48 random overlapping
49 regime
50 similar behavior
51 special quantum regime
52 specific heat
53 spectra
54 spherical cavity
55 state weights
56 successive multiplet components
57 temperature
58 thermodynamic functions
59 total energy density
60 weight
61 schema:name Exponential decrease of thermodynamic functions of photon gas in cubic and spherical cavities with low adiabatic invariants
62 schema:pagination 1001-1006
63 schema:productId N857572383fad4a6089d1dc06956659a5
64 N949bb84d5d7849af83c9d614371ed1e6
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009116161
66 https://doi.org/10.1134/s1054660x07070158
67 schema:sdDatePublished 2021-11-01T18:10
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N5da91974541c45b4b225c26ae4baa8e3
70 schema:url https://doi.org/10.1134/s1054660x07070158
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N013c794b367248ef850727958a8864bb schema:issueNumber 7
75 rdf:type schema:PublicationIssue
76 N0298a4ff1e1f40dbb18f46eacca071ec schema:volumeNumber 17
77 rdf:type schema:PublicationVolume
78 N5da91974541c45b4b225c26ae4baa8e3 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N857572383fad4a6089d1dc06956659a5 schema:name doi
81 schema:value 10.1134/s1054660x07070158
82 rdf:type schema:PropertyValue
83 N85c6ae0ab7d74a55b9d8a4267fbf7882 rdf:first sg:person.013264104343.10
84 rdf:rest rdf:nil
85 N949bb84d5d7849af83c9d614371ed1e6 schema:name dimensions_id
86 schema:value pub.1009116161
87 rdf:type schema:PropertyValue
88 Nf00f9e3e2b494c659392d29e05163a5d rdf:first sg:person.0650755673.57
89 rdf:rest N85c6ae0ab7d74a55b9d8a4267fbf7882
90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
91 schema:name Physical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
94 schema:name Quantum Physics
95 rdf:type schema:DefinedTerm
96 sg:journal.1030496 schema:issn 1054-660X
97 1555-6611
98 schema:name Laser Physics
99 schema:publisher Pleiades Publishing
100 rdf:type schema:Periodical
101 sg:person.013264104343.10 schema:affiliation grid-institutes:grid.425264.3
102 schema:familyName Ionescu-Pallas
103 schema:givenName N.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264104343.10
105 rdf:type schema:Person
106 sg:person.0650755673.57 schema:affiliation grid-institutes:grid.425264.3
107 schema:familyName Vlad
108 schema:givenName V. I.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650755673.57
110 rdf:type schema:Person
111 grid-institutes:grid.425264.3 schema:alternateName NILPRP Department of Lasers, Institute of Atomic Physics, P.O. Box MG-36, Bucharest-Magurele, Romania
112 schema:name NILPRP Department of Lasers, Institute of Atomic Physics, P.O. Box MG-36, Bucharest-Magurele, Romania
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...