Micromechanical model of deformation-induced surface roughening in polycrystalline materials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07

AUTHORS

V. A. Romanova, R. R. Balokhonov, A. V. Panin, E. E. Batukhtina, M. S. Kazachenok, V. S. Shakhijanov

ABSTRACT

A micromechanical model has been developed to describe deformation-induced surface roughening in polycrystalline materials. The three-dimensional polycrystalline structure is taken into account in an explicit form with regard to the crystallographic orientation of grains to simulate the micro- and mesoscale deformation processes. Constitutive relations for describing the grain response are derived on the basis of crystal plasticity theory that accounts for the anisotropy of elastic-plastic properties governed by the crystal lattice structure. The micromechanical model is used to numerically study surface roughening in microvolumes of polycrystalline aluminum and titanium under uniaxial tensile deformation. Two characteristic roughness scales are distinguished in the both cases. At the microscale, normal displacements relative to the free surface are caused by the formation of dislocation steps in grains emerging on the surface and by the displacement of neighboring grains relative to each other. Microscale roughness is more pronounced in titanium, which is due to the high level of elastic-plastic anisotropy typical of hcp crystals. The mesoscale roughness includes undulations and cluster structures formed with the involvement of groups of grains. The roughness is quantitatively evaluated using a dimensionless parameter, called the degree of roughness, which reflects the degree of surface shape deviation from a plane. An exponential dependence of the roughness degree on the strain degree is obtained. More... »

PAGES

324-333

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1029959917030080

DOI

http://dx.doi.org/10.1134/s1029959917030080

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091761645


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Romanova", 
        "givenName": "V. A.", 
        "id": "sg:person.016046464703.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046464703.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balokhonov", 
        "givenName": "R. R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia", 
            "National Research Tomsk Polytechnic University, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panin", 
        "givenName": "A. V.", 
        "id": "sg:person.014616167505.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014616167505.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Batukhtina", 
        "givenName": "E. E.", 
        "id": "sg:person.013740302315.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013740302315.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazachenok", 
        "givenName": "M. S.", 
        "id": "sg:person.07607157605.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07607157605.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shakhijanov", 
        "givenName": "V. S.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.msea.2012.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000113374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(99)00290-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000959749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2011.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001282747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(02)00557-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004174553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2013.03.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004447771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2009.10.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007014472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11012-015-0294-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009924728", 
          "https://doi.org/10.1007/s11012-015-0294-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2012.11.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011478701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2011.07.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019244621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1029959912010109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023044032", 
          "https://doi.org/10.1134/s1029959912010109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijplas.2004.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028493159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2008.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031910188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00187-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034499478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00187-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034499478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1029959913020021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041450098", 
          "https://doi.org/10.1134/s1029959913020021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(98)00189-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041532879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1029959915010026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041867910", 
          "https://doi.org/10.1134/s1029959915010026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/1743294414y.0000000407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046110706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2006.02.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046142474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2015.09.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049674161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-010-0249-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053069272", 
          "https://doi.org/10.1007/s11661-010-0249-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07", 
    "datePublishedReg": "2017-07-01", 
    "description": "A micromechanical model has been developed to describe deformation-induced surface roughening in polycrystalline materials. The three-dimensional polycrystalline structure is taken into account in an explicit form with regard to the crystallographic orientation of grains to simulate the micro- and mesoscale deformation processes. Constitutive relations for describing the grain response are derived on the basis of crystal plasticity theory that accounts for the anisotropy of elastic-plastic properties governed by the crystal lattice structure. The micromechanical model is used to numerically study surface roughening in microvolumes of polycrystalline aluminum and titanium under uniaxial tensile deformation. Two characteristic roughness scales are distinguished in the both cases. At the microscale, normal displacements relative to the free surface are caused by the formation of dislocation steps in grains emerging on the surface and by the displacement of neighboring grains relative to each other. Microscale roughness is more pronounced in titanium, which is due to the high level of elastic-plastic anisotropy typical of hcp crystals. The mesoscale roughness includes undulations and cluster structures formed with the involvement of groups of grains. The roughness is quantitatively evaluated using a dimensionless parameter, called the degree of roughness, which reflects the degree of surface shape deviation from a plane. An exponential dependence of the roughness degree on the strain degree is obtained.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1029959917030080", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136069", 
        "issn": [
          "1029-9599", 
          "1990-5424"
        ], 
        "name": "Physical Mesomechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Micromechanical model of deformation-induced surface roughening in polycrystalline materials", 
    "pagination": "324-333", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "180d1dc91b574c03dc1e46662f4113a7e8e3337c8bfc5fe9a306c73caab8cfe9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1029959917030080"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091761645"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1029959917030080", 
      "https://app.dimensions.ai/details/publication/pub.1091761645"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000535.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1029959917030080"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1029959917030080'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1029959917030080'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1029959917030080'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1029959917030080'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1029959917030080 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N2d83d46450d34e378359f4d4d080d002
4 schema:citation sg:pub.10.1007/s11012-015-0294-x
5 sg:pub.10.1007/s11661-010-0249-8
6 sg:pub.10.1134/s1029959912010109
7 sg:pub.10.1134/s1029959913020021
8 sg:pub.10.1134/s1029959915010026
9 https://doi.org/10.1016/j.actamat.2006.02.023
10 https://doi.org/10.1016/j.actamat.2009.10.058
11 https://doi.org/10.1016/j.actamat.2011.07.053
12 https://doi.org/10.1016/j.commatsci.2012.11.052
13 https://doi.org/10.1016/j.commatsci.2013.03.028
14 https://doi.org/10.1016/j.commatsci.2015.09.045
15 https://doi.org/10.1016/j.ijplas.2004.05.017
16 https://doi.org/10.1016/j.msea.2012.12.004
17 https://doi.org/10.1016/j.physme.2008.03.006
18 https://doi.org/10.1016/j.physme.2011.12.006
19 https://doi.org/10.1016/s0924-0136(98)00189-7
20 https://doi.org/10.1016/s1359-6454(02)00557-8
21 https://doi.org/10.1016/s1359-6454(03)00187-3
22 https://doi.org/10.1016/s1359-6454(99)00290-6
23 https://doi.org/10.1179/1743294414y.0000000407
24 schema:datePublished 2017-07
25 schema:datePublishedReg 2017-07-01
26 schema:description A micromechanical model has been developed to describe deformation-induced surface roughening in polycrystalline materials. The three-dimensional polycrystalline structure is taken into account in an explicit form with regard to the crystallographic orientation of grains to simulate the micro- and mesoscale deformation processes. Constitutive relations for describing the grain response are derived on the basis of crystal plasticity theory that accounts for the anisotropy of elastic-plastic properties governed by the crystal lattice structure. The micromechanical model is used to numerically study surface roughening in microvolumes of polycrystalline aluminum and titanium under uniaxial tensile deformation. Two characteristic roughness scales are distinguished in the both cases. At the microscale, normal displacements relative to the free surface are caused by the formation of dislocation steps in grains emerging on the surface and by the displacement of neighboring grains relative to each other. Microscale roughness is more pronounced in titanium, which is due to the high level of elastic-plastic anisotropy typical of hcp crystals. The mesoscale roughness includes undulations and cluster structures formed with the involvement of groups of grains. The roughness is quantitatively evaluated using a dimensionless parameter, called the degree of roughness, which reflects the degree of surface shape deviation from a plane. An exponential dependence of the roughness degree on the strain degree is obtained.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N02d964fe902f4b2c9e5f608e88b4bcf6
31 N09d95259f63e4e4e9d49f4125138750d
32 sg:journal.1136069
33 schema:name Micromechanical model of deformation-induced surface roughening in polycrystalline materials
34 schema:pagination 324-333
35 schema:productId Ncfeefae4b8bc4bdb8b70098addc99c04
36 Ne98c44d5496f4a9fbb39868595fb993b
37 Nfa905a5090b4455eb741f7445085a33f
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091761645
39 https://doi.org/10.1134/s1029959917030080
40 schema:sdDatePublished 2019-04-11T01:12
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N6d6278fb1d75400f8c1695cead1ea137
43 schema:url http://link.springer.com/10.1134%2FS1029959917030080
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N02d964fe902f4b2c9e5f608e88b4bcf6 schema:volumeNumber 20
48 rdf:type schema:PublicationVolume
49 N09d95259f63e4e4e9d49f4125138750d schema:issueNumber 3
50 rdf:type schema:PublicationIssue
51 N0d6833a0eb16422998d4fa4928eb2b5a rdf:first sg:person.07607157605.82
52 rdf:rest Nf93dd5926ccf49a19f8d2784bdddb6a3
53 N2d83d46450d34e378359f4d4d080d002 rdf:first sg:person.016046464703.66
54 rdf:rest Nf906de2f68f0466fb6d8c548a14e7fb7
55 N6a745441529b4d35a412606b585308ca rdf:first sg:person.013740302315.52
56 rdf:rest N0d6833a0eb16422998d4fa4928eb2b5a
57 N6d6278fb1d75400f8c1695cead1ea137 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N79269fe0b96d418f9ac99e12e3b36182 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
60 schema:familyName Balokhonov
61 schema:givenName R. R.
62 rdf:type schema:Person
63 N993dfdbb6cba4004856ed873ce53709c rdf:first sg:person.014616167505.66
64 rdf:rest N6a745441529b4d35a412606b585308ca
65 Nbaf39e5730044d77b83165a1cc51bcb5 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
66 schema:familyName Shakhijanov
67 schema:givenName V. S.
68 rdf:type schema:Person
69 Ncfeefae4b8bc4bdb8b70098addc99c04 schema:name readcube_id
70 schema:value 180d1dc91b574c03dc1e46662f4113a7e8e3337c8bfc5fe9a306c73caab8cfe9
71 rdf:type schema:PropertyValue
72 Ne98c44d5496f4a9fbb39868595fb993b schema:name dimensions_id
73 schema:value pub.1091761645
74 rdf:type schema:PropertyValue
75 Nf906de2f68f0466fb6d8c548a14e7fb7 rdf:first N79269fe0b96d418f9ac99e12e3b36182
76 rdf:rest N993dfdbb6cba4004856ed873ce53709c
77 Nf93dd5926ccf49a19f8d2784bdddb6a3 rdf:first Nbaf39e5730044d77b83165a1cc51bcb5
78 rdf:rest rdf:nil
79 Nfa905a5090b4455eb741f7445085a33f schema:name doi
80 schema:value 10.1134/s1029959917030080
81 rdf:type schema:PropertyValue
82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
83 schema:name Engineering
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
86 schema:name Materials Engineering
87 rdf:type schema:DefinedTerm
88 sg:journal.1136069 schema:issn 1029-9599
89 1990-5424
90 schema:name Physical Mesomechanics
91 rdf:type schema:Periodical
92 sg:person.013740302315.52 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
93 schema:familyName Batukhtina
94 schema:givenName E. E.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013740302315.52
96 rdf:type schema:Person
97 sg:person.014616167505.66 schema:affiliation https://www.grid.ac/institutes/grid.27736.37
98 schema:familyName Panin
99 schema:givenName A. V.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014616167505.66
101 rdf:type schema:Person
102 sg:person.016046464703.66 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
103 schema:familyName Romanova
104 schema:givenName V. A.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046464703.66
106 rdf:type schema:Person
107 sg:person.07607157605.82 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
108 schema:familyName Kazachenok
109 schema:givenName M. S.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07607157605.82
111 rdf:type schema:Person
112 sg:pub.10.1007/s11012-015-0294-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009924728
113 https://doi.org/10.1007/s11012-015-0294-x
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11661-010-0249-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053069272
116 https://doi.org/10.1007/s11661-010-0249-8
117 rdf:type schema:CreativeWork
118 sg:pub.10.1134/s1029959912010109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023044032
119 https://doi.org/10.1134/s1029959912010109
120 rdf:type schema:CreativeWork
121 sg:pub.10.1134/s1029959913020021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041450098
122 https://doi.org/10.1134/s1029959913020021
123 rdf:type schema:CreativeWork
124 sg:pub.10.1134/s1029959915010026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041867910
125 https://doi.org/10.1134/s1029959915010026
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.actamat.2006.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046142474
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.actamat.2009.10.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007014472
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.actamat.2011.07.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019244621
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.commatsci.2012.11.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011478701
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.commatsci.2013.03.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004447771
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.commatsci.2015.09.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049674161
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ijplas.2004.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028493159
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.msea.2012.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000113374
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.physme.2008.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031910188
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.physme.2011.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001282747
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0924-0136(98)00189-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041532879
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s1359-6454(02)00557-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004174553
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s1359-6454(03)00187-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034499478
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s1359-6454(99)00290-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000959749
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1179/1743294414y.0000000407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046110706
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.27736.37 schema:alternateName Tomsk Polytechnic University
158 schema:name Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
159 National Research Tomsk Polytechnic University, 634050, Tomsk, Russia
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science
162 schema:name Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.77602.34 schema:alternateName Tomsk State University
165 schema:name National Research Tomsk State University, 634050, Tomsk, Russia
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...