Influence of phase interface properties on mechanical characteristics of metal ceramic composites View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-10

AUTHORS

S. V. Astafurov, E. V. Shilko, V. E. Ovcharenko

ABSTRACT

The paper reports on theoretical study to elucidate the influence of geometric (width) and mechanical characteristics of phase interfaces on strength, ultimate strain, and fracture energy of metal ceramic composites. The study was performed by computer simulation with the movable cellular automaton method and a well-developed mesoscale structural composite model that takes explicit account of wide transition zones between reinforcing inclusions and the matrix. It is shown that the formation of relatively wide “ceramic inclusions-binder” interfaces with gradual variation in mechanical properties allows a considerable increase in the mechanical properties of the composite. Of great significance is not only the interface width but also the gradient of mechanical properties in the transition zone. The presence of defects and inclusions of nano- and atomic scales in interface regions can increase internal stresses in these regions, induce a steep gradient of mechanical properties in them, and hence decrease strain characteristics and fracture energy of the composite. More... »

PAGES

282-291

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1029959914040055

DOI

http://dx.doi.org/10.1134/s1029959914040055

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000762456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia", 
            "National Research Tomsk State University, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Astafurov", 
        "givenName": "S. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia", 
            "National Research Tomsk State University, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shilko", 
        "givenName": "E. V.", 
        "id": "sg:person.011622670470.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011622670470.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ovcharenko", 
        "givenName": "V. E.", 
        "id": "sg:person.011741246016.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011741246016.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.commatsci.2013.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001505032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8442(01)00079-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001658061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9783527603978.mst0150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006440515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.triboint.2009.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008897610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2009.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010905826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542506070153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010965931", 
          "https://doi.org/10.1134/s0965542506070153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1804572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013364010", 
          "https://doi.org/10.1134/1.1804572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmst.2013.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015167880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2011.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022119987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-006-6572-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025878397", 
          "https://doi.org/10.1007/s10853-006-6572-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-006-6572-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025878397", 
          "https://doi.org/10.1007/s10853-006-6572-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2007.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036083838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2005.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043376484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2006.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050527195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470091355.ecm006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051932486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/geot.1979.29.1.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068209785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3139/146.110319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071031420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1103258722", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470020180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109700367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470020180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109700367"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-10", 
    "datePublishedReg": "2014-10-01", 
    "description": "The paper reports on theoretical study to elucidate the influence of geometric (width) and mechanical characteristics of phase interfaces on strength, ultimate strain, and fracture energy of metal ceramic composites. The study was performed by computer simulation with the movable cellular automaton method and a well-developed mesoscale structural composite model that takes explicit account of wide transition zones between reinforcing inclusions and the matrix. It is shown that the formation of relatively wide \u201cceramic inclusions-binder\u201d interfaces with gradual variation in mechanical properties allows a considerable increase in the mechanical properties of the composite. Of great significance is not only the interface width but also the gradient of mechanical properties in the transition zone. The presence of defects and inclusions of nano- and atomic scales in interface regions can increase internal stresses in these regions, induce a steep gradient of mechanical properties in them, and hence decrease strain characteristics and fracture energy of the composite.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1029959914040055", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136069", 
        "issn": [
          "1029-9599", 
          "1990-5424"
        ], 
        "name": "Physical Mesomechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Influence of phase interface properties on mechanical characteristics of metal ceramic composites", 
    "pagination": "282-291", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "03a173a2b6fe6a1821fc0331362c220920cf71fd3c43ec2995b845c2e3d0f8a9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1029959914040055"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000762456"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1029959914040055", 
      "https://app.dimensions.ai/details/publication/pub.1000762456"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000579.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S1029959914040055"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1029959914040055'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1029959914040055'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1029959914040055'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1029959914040055'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1029959914040055 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N345791e09a3f4f069f8aa64c344325be
4 schema:citation sg:pub.10.1007/s10853-006-6572-1
5 sg:pub.10.1134/1.1804572
6 sg:pub.10.1134/s0965542506070153
7 https://app.dimensions.ai/details/publication/pub.1103258722
8 https://doi.org/10.1002/0470020180
9 https://doi.org/10.1002/0470091355.ecm006
10 https://doi.org/10.1002/9783527603978.mst0150
11 https://doi.org/10.1016/j.actamat.2007.01.008
12 https://doi.org/10.1016/j.commatsci.2013.03.006
13 https://doi.org/10.1016/j.compscitech.2006.01.007
14 https://doi.org/10.1016/j.ijmachtools.2005.11.012
15 https://doi.org/10.1016/j.jmst.2013.08.002
16 https://doi.org/10.1016/j.physme.2009.03.012
17 https://doi.org/10.1016/j.physme.2011.12.003
18 https://doi.org/10.1016/j.triboint.2009.10.012
19 https://doi.org/10.1016/s0167-8442(01)00079-9
20 https://doi.org/10.1680/geot.1979.29.1.47
21 https://doi.org/10.3139/146.110319
22 schema:datePublished 2014-10
23 schema:datePublishedReg 2014-10-01
24 schema:description The paper reports on theoretical study to elucidate the influence of geometric (width) and mechanical characteristics of phase interfaces on strength, ultimate strain, and fracture energy of metal ceramic composites. The study was performed by computer simulation with the movable cellular automaton method and a well-developed mesoscale structural composite model that takes explicit account of wide transition zones between reinforcing inclusions and the matrix. It is shown that the formation of relatively wide “ceramic inclusions-binder” interfaces with gradual variation in mechanical properties allows a considerable increase in the mechanical properties of the composite. Of great significance is not only the interface width but also the gradient of mechanical properties in the transition zone. The presence of defects and inclusions of nano- and atomic scales in interface regions can increase internal stresses in these regions, induce a steep gradient of mechanical properties in them, and hence decrease strain characteristics and fracture energy of the composite.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf Ndf76625596de4d4f810c5136f069f4b2
29 Nf7941e0b2aff4f64af0d115bdcb67d8d
30 sg:journal.1136069
31 schema:name Influence of phase interface properties on mechanical characteristics of metal ceramic composites
32 schema:pagination 282-291
33 schema:productId N09934126161947699c56ec51548007d2
34 N690901e3ffdb4de6bf6a384fd5581346
35 Na9c5ab71d0d641d7bfeac39ce755e2c9
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000762456
37 https://doi.org/10.1134/s1029959914040055
38 schema:sdDatePublished 2019-04-10T20:07
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Na98ff20540384deb858cdaa411328fff
41 schema:url http://link.springer.com/10.1134/S1029959914040055
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N09934126161947699c56ec51548007d2 schema:name doi
46 schema:value 10.1134/s1029959914040055
47 rdf:type schema:PropertyValue
48 N345791e09a3f4f069f8aa64c344325be rdf:first N6c39185d5682415c9f368b90275d8a6e
49 rdf:rest N51dd673f697d42a2990717e6e273ad83
50 N51dd673f697d42a2990717e6e273ad83 rdf:first sg:person.011622670470.27
51 rdf:rest Ncfe8d3292651459fa9ed408064c6baef
52 N690901e3ffdb4de6bf6a384fd5581346 schema:name dimensions_id
53 schema:value pub.1000762456
54 rdf:type schema:PropertyValue
55 N6c39185d5682415c9f368b90275d8a6e schema:affiliation https://www.grid.ac/institutes/grid.77602.34
56 schema:familyName Astafurov
57 schema:givenName S. V.
58 rdf:type schema:Person
59 Na98ff20540384deb858cdaa411328fff schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Na9c5ab71d0d641d7bfeac39ce755e2c9 schema:name readcube_id
62 schema:value 03a173a2b6fe6a1821fc0331362c220920cf71fd3c43ec2995b845c2e3d0f8a9
63 rdf:type schema:PropertyValue
64 Ncfe8d3292651459fa9ed408064c6baef rdf:first sg:person.011741246016.69
65 rdf:rest rdf:nil
66 Ndf76625596de4d4f810c5136f069f4b2 schema:issueNumber 4
67 rdf:type schema:PublicationIssue
68 Nf7941e0b2aff4f64af0d115bdcb67d8d schema:volumeNumber 17
69 rdf:type schema:PublicationVolume
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
74 schema:name Materials Engineering
75 rdf:type schema:DefinedTerm
76 sg:journal.1136069 schema:issn 1029-9599
77 1990-5424
78 schema:name Physical Mesomechanics
79 rdf:type schema:Periodical
80 sg:person.011622670470.27 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
81 schema:familyName Shilko
82 schema:givenName E. V.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011622670470.27
84 rdf:type schema:Person
85 sg:person.011741246016.69 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
86 schema:familyName Ovcharenko
87 schema:givenName V. E.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011741246016.69
89 rdf:type schema:Person
90 sg:pub.10.1007/s10853-006-6572-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025878397
91 https://doi.org/10.1007/s10853-006-6572-1
92 rdf:type schema:CreativeWork
93 sg:pub.10.1134/1.1804572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013364010
94 https://doi.org/10.1134/1.1804572
95 rdf:type schema:CreativeWork
96 sg:pub.10.1134/s0965542506070153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010965931
97 https://doi.org/10.1134/s0965542506070153
98 rdf:type schema:CreativeWork
99 https://app.dimensions.ai/details/publication/pub.1103258722 schema:CreativeWork
100 https://doi.org/10.1002/0470020180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109700367
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1002/0470091355.ecm006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051932486
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/9783527603978.mst0150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006440515
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.actamat.2007.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036083838
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.commatsci.2013.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001505032
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.compscitech.2006.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050527195
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.ijmachtools.2005.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043376484
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.jmst.2013.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015167880
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.physme.2009.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010905826
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.physme.2011.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022119987
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.triboint.2009.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008897610
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0167-8442(01)00079-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001658061
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1680/geot.1979.29.1.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068209785
125 rdf:type schema:CreativeWork
126 https://doi.org/10.3139/146.110319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071031420
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science
129 schema:name Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
130 rdf:type schema:Organization
131 https://www.grid.ac/institutes/grid.77602.34 schema:alternateName Tomsk State University
132 schema:name Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
133 National Research Tomsk State University, 634050, Tomsk, Russia
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...