Nonlinear wave processes in a deformable solid as a hierarchically organized system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-05

AUTHORS

Victor E. Panin, V. E. Egorushkin, A. V. Panin

ABSTRACT

Theoretical predictions and experiments demonstrate that solid state mechanics should consider, along with a structurally equilibrium 3D crystalline subsystem, a structurally nonequilibrium planar subsystem as a complex of all surface layers and internal interfaces with broken translation invariance. Primary plastic flow of a loaded solid develops in its structurally nonequilibrium planar subsystem as channeled nonlinear waves of local structural transformations that determine the self-organization law of multiscale plastic flow. These waves initiate mesoscale rotational deformation modes, giving rise to all types of microscale strain-induced defects in the planar subsystem. The strain-induced defects are emitted into the crystalline subsystem as an inhibitor of nonlinear waves of plastic flow in the planar subsystem. Plastic deformation of solids, whatever the loading type, evolves in the field of rotational couple forces. Loss of hierarchical self-consistency by rotational deformation modes culminates in fracture of material as an uncompensated rotational deformation mode on the macroscale. More... »

PAGES

133-146

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1029959912020014

DOI

http://dx.doi.org/10.1134/s1029959912020014

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040609153


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panin", 
        "givenName": "Victor E.", 
        "id": "sg:person.010475400677.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010475400677.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Egorushkin", 
        "givenName": "V. E.", 
        "id": "sg:person.011032765503.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011032765503.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panin", 
        "givenName": "A. V.", 
        "id": "sg:person.014616167505.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014616167505.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00894512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000308402", 
          "https://doi.org/10.1007/bf00894512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2010.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000868719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans1989.38.1033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004408783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00420827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007354289", 
          "https://doi.org/10.1007/bf00420827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00420827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007354289", 
          "https://doi.org/10.1007/bf00420827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00896010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011137674", 
          "https://doi.org/10.1007/bf00896010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1028335806080040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015748992", 
          "https://doi.org/10.1134/s1028335806080040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2010.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017043184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2010.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017482578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00560067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024657673", 
          "https://doi.org/10.1007/bf00560067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00560067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024657673", 
          "https://doi.org/10.1007/bf00560067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00896011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026504016", 
          "https://doi.org/10.1007/bf00896011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00896011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026504016", 
          "https://doi.org/10.1007/bf00896011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2010.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030385795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2008.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030651836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2011.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033279856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2007.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036685366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2011.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039332999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2010.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040471062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2008.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043767796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2011.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044346388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02661312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050250593", 
          "https://doi.org/10.1007/bf02661312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02661312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050250593", 
          "https://doi.org/10.1007/bf02661312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physme.2008.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050586497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19834950406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051684203"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-05", 
    "datePublishedReg": "2012-05-01", 
    "description": "Theoretical predictions and experiments demonstrate that solid state mechanics should consider, along with a structurally equilibrium 3D crystalline subsystem, a structurally nonequilibrium planar subsystem as a complex of all surface layers and internal interfaces with broken translation invariance. Primary plastic flow of a loaded solid develops in its structurally nonequilibrium planar subsystem as channeled nonlinear waves of local structural transformations that determine the self-organization law of multiscale plastic flow. These waves initiate mesoscale rotational deformation modes, giving rise to all types of microscale strain-induced defects in the planar subsystem. The strain-induced defects are emitted into the crystalline subsystem as an inhibitor of nonlinear waves of plastic flow in the planar subsystem. Plastic deformation of solids, whatever the loading type, evolves in the field of rotational couple forces. Loss of hierarchical self-consistency by rotational deformation modes culminates in fracture of material as an uncompensated rotational deformation mode on the macroscale.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1029959912020014", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136069", 
        "issn": [
          "1029-9599", 
          "1990-5424"
        ], 
        "name": "Physical Mesomechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Nonlinear wave processes in a deformable solid as a hierarchically organized system", 
    "pagination": "133-146", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c17273002e269420aff4f725b2dc82870927a690e6bb5efcd8d3ed1236b3cc5d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1029959912020014"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040609153"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1029959912020014", 
      "https://app.dimensions.ai/details/publication/pub.1040609153"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S1029959912020014"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1029959912020014'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1029959912020014'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1029959912020014'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1029959912020014'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1029959912020014 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N98183ad96f644924b794d8bf37160107
4 schema:citation sg:pub.10.1007/bf00420827
5 sg:pub.10.1007/bf00560067
6 sg:pub.10.1007/bf00894512
7 sg:pub.10.1007/bf00896010
8 sg:pub.10.1007/bf00896011
9 sg:pub.10.1007/bf02661312
10 sg:pub.10.1134/s1028335806080040
11 https://doi.org/10.1002/andp.19834950406
12 https://doi.org/10.1016/j.physme.2007.06.001
13 https://doi.org/10.1016/j.physme.2008.03.001
14 https://doi.org/10.1016/j.physme.2008.07.001
15 https://doi.org/10.1016/j.physme.2008.11.001
16 https://doi.org/10.1016/j.physme.2010.07.001
17 https://doi.org/10.1016/j.physme.2010.07.012
18 https://doi.org/10.1016/j.physme.2010.07.013
19 https://doi.org/10.1016/j.physme.2010.11.002
20 https://doi.org/10.1016/j.physme.2010.11.003
21 https://doi.org/10.1016/j.physme.2011.12.002
22 https://doi.org/10.1016/j.physme.2011.12.004
23 https://doi.org/10.1016/j.physme.2011.12.007
24 https://doi.org/10.2320/matertrans1989.38.1033
25 schema:datePublished 2012-05
26 schema:datePublishedReg 2012-05-01
27 schema:description Theoretical predictions and experiments demonstrate that solid state mechanics should consider, along with a structurally equilibrium 3D crystalline subsystem, a structurally nonequilibrium planar subsystem as a complex of all surface layers and internal interfaces with broken translation invariance. Primary plastic flow of a loaded solid develops in its structurally nonequilibrium planar subsystem as channeled nonlinear waves of local structural transformations that determine the self-organization law of multiscale plastic flow. These waves initiate mesoscale rotational deformation modes, giving rise to all types of microscale strain-induced defects in the planar subsystem. The strain-induced defects are emitted into the crystalline subsystem as an inhibitor of nonlinear waves of plastic flow in the planar subsystem. Plastic deformation of solids, whatever the loading type, evolves in the field of rotational couple forces. Loss of hierarchical self-consistency by rotational deformation modes culminates in fracture of material as an uncompensated rotational deformation mode on the macroscale.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N6e0651dfa5f1406bb6fce934509cee29
32 N9134ff044b5e4da5a49482ca9925fcb5
33 sg:journal.1136069
34 schema:name Nonlinear wave processes in a deformable solid as a hierarchically organized system
35 schema:pagination 133-146
36 schema:productId N1aa3664c98dd46f789df7195a58386f0
37 N2fa7eab876a04f8183f15ba9407bd354
38 Nbf1a66f6bf5e4053b1e522d0e3eaf832
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040609153
40 https://doi.org/10.1134/s1029959912020014
41 schema:sdDatePublished 2019-04-10T22:30
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nc0ba2d70cd1a480f980b0b16fc3a7ffe
44 schema:url http://link.springer.com/10.1134/S1029959912020014
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N05f6ea3b2def468bb1bf8c9488387eab rdf:first sg:person.014616167505.66
49 rdf:rest rdf:nil
50 N1aa3664c98dd46f789df7195a58386f0 schema:name doi
51 schema:value 10.1134/s1029959912020014
52 rdf:type schema:PropertyValue
53 N2fa7eab876a04f8183f15ba9407bd354 schema:name dimensions_id
54 schema:value pub.1040609153
55 rdf:type schema:PropertyValue
56 N6e0651dfa5f1406bb6fce934509cee29 schema:volumeNumber 15
57 rdf:type schema:PublicationVolume
58 N8f6e88ba83094f949789df469513423b rdf:first sg:person.011032765503.18
59 rdf:rest N05f6ea3b2def468bb1bf8c9488387eab
60 N9134ff044b5e4da5a49482ca9925fcb5 schema:issueNumber 3-4
61 rdf:type schema:PublicationIssue
62 N98183ad96f644924b794d8bf37160107 rdf:first sg:person.010475400677.51
63 rdf:rest N8f6e88ba83094f949789df469513423b
64 Nbf1a66f6bf5e4053b1e522d0e3eaf832 schema:name readcube_id
65 schema:value c17273002e269420aff4f725b2dc82870927a690e6bb5efcd8d3ed1236b3cc5d
66 rdf:type schema:PropertyValue
67 Nc0ba2d70cd1a480f980b0b16fc3a7ffe schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
70 schema:name Engineering
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
73 schema:name Materials Engineering
74 rdf:type schema:DefinedTerm
75 sg:journal.1136069 schema:issn 1029-9599
76 1990-5424
77 schema:name Physical Mesomechanics
78 rdf:type schema:Periodical
79 sg:person.010475400677.51 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
80 schema:familyName Panin
81 schema:givenName Victor E.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010475400677.51
83 rdf:type schema:Person
84 sg:person.011032765503.18 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
85 schema:familyName Egorushkin
86 schema:givenName V. E.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011032765503.18
88 rdf:type schema:Person
89 sg:person.014616167505.66 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
90 schema:familyName Panin
91 schema:givenName A. V.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014616167505.66
93 rdf:type schema:Person
94 sg:pub.10.1007/bf00420827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007354289
95 https://doi.org/10.1007/bf00420827
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf00560067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024657673
98 https://doi.org/10.1007/bf00560067
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf00894512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000308402
101 https://doi.org/10.1007/bf00894512
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf00896010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011137674
104 https://doi.org/10.1007/bf00896010
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf00896011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026504016
107 https://doi.org/10.1007/bf00896011
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02661312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050250593
110 https://doi.org/10.1007/bf02661312
111 rdf:type schema:CreativeWork
112 sg:pub.10.1134/s1028335806080040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015748992
113 https://doi.org/10.1134/s1028335806080040
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/andp.19834950406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051684203
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.physme.2007.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036685366
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.physme.2008.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043767796
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.physme.2008.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030651836
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.physme.2008.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050586497
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.physme.2010.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030385795
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.physme.2010.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040471062
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.physme.2010.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017043184
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.physme.2010.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017482578
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.physme.2010.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000868719
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.physme.2011.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033279856
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.physme.2011.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039332999
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.physme.2011.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044346388
140 rdf:type schema:CreativeWork
141 https://doi.org/10.2320/matertrans1989.38.1033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004408783
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science
144 schema:name Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk, Russia
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...