On the Moving Contact Line Singularity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

R. V. Krechetnikov

ABSTRACT

Given that contact line between liquid and solid phases can move regardless how negligibly small are the surface roughness, Navier slip, liquid volatility, impurities, deviations from the Newtonian behavior, and other system-dependent parameters, the problem is treated here from the pure hydrodynamical point of view only. Based on straightforward logical considerations, we would like to offer a new idea of how the moving contact line singularity can be resolved and provide support with estimates of the involved physical parameters as well as with an analytical local solution. More... »

PAGES

27-29

Journal

TITLE

Doklady Physics

ISSUE

1

VOLUME

64

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1028335819010099

DOI

http://dx.doi.org/10.1134/s1028335819010099

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113204513


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Alberta", 
          "id": "https://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Mathematics, University of Alberta, AB, T6G 2G1, Edmonton, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krechetnikov", 
        "givenName": "R. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0021-9797(71)90188-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047605685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112064000015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053984528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112064000015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053984528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112064000015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053984528"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Given that contact line between liquid and solid phases can move regardless how negligibly small are the surface roughness, Navier slip, liquid volatility, impurities, deviations from the Newtonian behavior, and other system-dependent parameters, the problem is treated here from the pure hydrodynamical point of view only. Based on straightforward logical considerations, we would like to offer a new idea of how the moving contact line singularity can be resolved and provide support with estimates of the involved physical parameters as well as with an analytical local solution.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1134/s1028335819010099", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136384", 
        "issn": [
          "1028-3358", 
          "1562-6903"
        ], 
        "name": "Doklady Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "64"
      }
    ], 
    "name": "On the Moving Contact Line Singularity", 
    "pagination": "27-29", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1028335819010099"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "49146e08a73976873662d9c482d06f64731257db90170cfede1843990ae5f482"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113204513"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1028335819010099", 
      "https://app.dimensions.ai/details/publication/pub.1113204513"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56159_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1028335819010099"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1028335819010099'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1028335819010099'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1028335819010099'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1028335819010099'


 

This table displays all metadata directly associated to this object as RDF triples.

66 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1028335819010099 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author N1fa40eb5235f4c7a91112d9ea0ce966c
4 schema:citation https://doi.org/10.1016/0021-9797(71)90188-3
5 https://doi.org/10.1017/s0022112064000015
6 schema:datePublished 2019-01
7 schema:datePublishedReg 2019-01-01
8 schema:description Given that contact line between liquid and solid phases can move regardless how negligibly small are the surface roughness, Navier slip, liquid volatility, impurities, deviations from the Newtonian behavior, and other system-dependent parameters, the problem is treated here from the pure hydrodynamical point of view only. Based on straightforward logical considerations, we would like to offer a new idea of how the moving contact line singularity can be resolved and provide support with estimates of the involved physical parameters as well as with an analytical local solution.
9 schema:genre non_research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N4964c67385f6490394100bc58e361c0b
13 Nae752e29ddc14992b944c60abe186ce8
14 sg:journal.1136384
15 schema:name On the Moving Contact Line Singularity
16 schema:pagination 27-29
17 schema:productId N5bfe83dd85f940b5b5408da99f8637e4
18 Na6c51fb065db42f19cd6c37989196a70
19 Nebcc1cf1d7124fd89a8a03afeb86c330
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113204513
21 https://doi.org/10.1134/s1028335819010099
22 schema:sdDatePublished 2019-04-15T09:13
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Neff776e3b276485eb212890d91766d7e
25 schema:url https://link.springer.com/10.1134%2FS1028335819010099
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N1fa40eb5235f4c7a91112d9ea0ce966c rdf:first N60d1d98943aa4f54a69263bd4e1d70ea
30 rdf:rest rdf:nil
31 N4964c67385f6490394100bc58e361c0b schema:issueNumber 1
32 rdf:type schema:PublicationIssue
33 N5bfe83dd85f940b5b5408da99f8637e4 schema:name readcube_id
34 schema:value 49146e08a73976873662d9c482d06f64731257db90170cfede1843990ae5f482
35 rdf:type schema:PropertyValue
36 N60d1d98943aa4f54a69263bd4e1d70ea schema:affiliation https://www.grid.ac/institutes/grid.17089.37
37 schema:familyName Krechetnikov
38 schema:givenName R. V.
39 rdf:type schema:Person
40 Na6c51fb065db42f19cd6c37989196a70 schema:name doi
41 schema:value 10.1134/s1028335819010099
42 rdf:type schema:PropertyValue
43 Nae752e29ddc14992b944c60abe186ce8 schema:volumeNumber 64
44 rdf:type schema:PublicationVolume
45 Nebcc1cf1d7124fd89a8a03afeb86c330 schema:name dimensions_id
46 schema:value pub.1113204513
47 rdf:type schema:PropertyValue
48 Neff776e3b276485eb212890d91766d7e schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
51 schema:name Chemical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
54 schema:name Analytical Chemistry
55 rdf:type schema:DefinedTerm
56 sg:journal.1136384 schema:issn 1028-3358
57 1562-6903
58 schema:name Doklady Physics
59 rdf:type schema:Periodical
60 https://doi.org/10.1016/0021-9797(71)90188-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047605685
61 rdf:type schema:CreativeWork
62 https://doi.org/10.1017/s0022112064000015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053984528
63 rdf:type schema:CreativeWork
64 https://www.grid.ac/institutes/grid.17089.37 schema:alternateName University of Alberta
65 schema:name Department of Mathematics, University of Alberta, AB, T6G 2G1, Edmonton, Canada
66 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...