Deformation of a water shell during free fall in air View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-04

AUTHORS

V. E. Nakoryakov, G. V. Kuznetsov, P. A. Strizhak

ABSTRACT

The basic regularities of the change in the shape and sizes (the initial volume is 0.05–0.5 L) of a water shell are singled out in its deformation during free fall in air from a height of 3 m. The 3D recording of the basic stages of deformation (flattening of the shell, nucleation, growth, and destruction of bubbles, formation of the droplet cloud) is carried out using high-speed (up to 105 frames per second) Phantom V411 and Phantom Miro M310 video cameras and the program complex Tema Automotive (with the function of continuous tracking). The physical model of destruction of large water bodies is formulated at free fall with the formation of the droplet cloud. More... »

PAGES

195-200

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1028335816040078

DOI

http://dx.doi.org/10.1134/s1028335816040078

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040573140


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kutateladze Institute of Thermal Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakoryakov", 
        "givenName": "V. E.", 
        "id": "sg:person.07440273776.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440273776.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "National Research Tomsk Polytechnical University, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuznetsov", 
        "givenName": "G. V.", 
        "id": "sg:person.016350412737.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016350412737.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "National Research Tomsk Polytechnical University, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strizhak", 
        "givenName": "P. A.", 
        "id": "sg:person.012074200207.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012074200207.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2014.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017275501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027891587", 
          "https://doi.org/10.1038/nphys1340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027891587", 
          "https://doi.org/10.1038/nphys1340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034799689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsolstr.2012.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049338136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.134502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.134502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/v10178-012-0071-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103920319"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04", 
    "datePublishedReg": "2016-04-01", 
    "description": "The basic regularities of the change in the shape and sizes (the initial volume is 0.05\u20130.5 L) of a water shell are singled out in its deformation during free fall in air from a height of 3 m. The 3D recording of the basic stages of deformation (flattening of the shell, nucleation, growth, and destruction of bubbles, formation of the droplet cloud) is carried out using high-speed (up to 105 frames per second) Phantom V411 and Phantom Miro M310 video cameras and the program complex Tema Automotive (with the function of continuous tracking). The physical model of destruction of large water bodies is formulated at free fall with the formation of the droplet cloud.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1028335816040078", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136384", 
        "issn": [
          "1028-3358", 
          "1562-6903"
        ], 
        "name": "Doklady Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "Deformation of a water shell during free fall in air", 
    "pagination": "195-200", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c1469803c6c12f93db359eb42e14cab00baeb087730399b35911c06a87ab0e06"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1028335816040078"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040573140"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1028335816040078", 
      "https://app.dimensions.ai/details/publication/pub.1040573140"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000592.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S1028335816040078"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1028335816040078'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1028335816040078'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1028335816040078'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1028335816040078'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1028335816040078 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N40c9f0d5121c45c59c02ab73391aba95
4 schema:citation sg:pub.10.1038/nphys1340
5 https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.078
6 https://doi.org/10.1016/j.ijsolstr.2012.01.005
7 https://doi.org/10.1016/j.ijthermalsci.2014.10.002
8 https://doi.org/10.1103/physrevlett.98.134502
9 https://doi.org/10.2478/v10178-012-0071-2
10 schema:datePublished 2016-04
11 schema:datePublishedReg 2016-04-01
12 schema:description The basic regularities of the change in the shape and sizes (the initial volume is 0.05–0.5 L) of a water shell are singled out in its deformation during free fall in air from a height of 3 m. The 3D recording of the basic stages of deformation (flattening of the shell, nucleation, growth, and destruction of bubbles, formation of the droplet cloud) is carried out using high-speed (up to 105 frames per second) Phantom V411 and Phantom Miro M310 video cameras and the program complex Tema Automotive (with the function of continuous tracking). The physical model of destruction of large water bodies is formulated at free fall with the formation of the droplet cloud.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N6b0c7bea94a34265bc143aff79dec55f
17 N7ba71a9be71a414d8384fa8a6e0333b5
18 sg:journal.1136384
19 schema:name Deformation of a water shell during free fall in air
20 schema:pagination 195-200
21 schema:productId N0f810a07eac64c0ba698c9b871b59c27
22 N57bcaeec54ed43a6a76e09d960bc5e43
23 Na1f3e46042ba4df4aef97f4daf95b0b0
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040573140
25 https://doi.org/10.1134/s1028335816040078
26 schema:sdDatePublished 2019-04-10T22:45
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nf7344c4acc7c46969472360f4f52cb6b
29 schema:url http://link.springer.com/10.1134/S1028335816040078
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N0f810a07eac64c0ba698c9b871b59c27 schema:name doi
34 schema:value 10.1134/s1028335816040078
35 rdf:type schema:PropertyValue
36 N40c9f0d5121c45c59c02ab73391aba95 rdf:first sg:person.07440273776.13
37 rdf:rest N53565adafd03440aa1fab792836dda12
38 N53565adafd03440aa1fab792836dda12 rdf:first sg:person.016350412737.46
39 rdf:rest Na50b01dec23c426cb3c027e5b2c63bc0
40 N57bcaeec54ed43a6a76e09d960bc5e43 schema:name readcube_id
41 schema:value c1469803c6c12f93db359eb42e14cab00baeb087730399b35911c06a87ab0e06
42 rdf:type schema:PropertyValue
43 N6b0c7bea94a34265bc143aff79dec55f schema:issueNumber 4
44 rdf:type schema:PublicationIssue
45 N7ba71a9be71a414d8384fa8a6e0333b5 schema:volumeNumber 61
46 rdf:type schema:PublicationVolume
47 Na1f3e46042ba4df4aef97f4daf95b0b0 schema:name dimensions_id
48 schema:value pub.1040573140
49 rdf:type schema:PropertyValue
50 Na50b01dec23c426cb3c027e5b2c63bc0 rdf:first sg:person.012074200207.04
51 rdf:rest rdf:nil
52 Nf7344c4acc7c46969472360f4f52cb6b schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
55 schema:name Information and Computing Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
58 schema:name Artificial Intelligence and Image Processing
59 rdf:type schema:DefinedTerm
60 sg:journal.1136384 schema:issn 1028-3358
61 1562-6903
62 schema:name Doklady Physics
63 rdf:type schema:Periodical
64 sg:person.012074200207.04 schema:affiliation https://www.grid.ac/institutes/grid.27736.37
65 schema:familyName Strizhak
66 schema:givenName P. A.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012074200207.04
68 rdf:type schema:Person
69 sg:person.016350412737.46 schema:affiliation https://www.grid.ac/institutes/grid.27736.37
70 schema:familyName Kuznetsov
71 schema:givenName G. V.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016350412737.46
73 rdf:type schema:Person
74 sg:person.07440273776.13 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
75 schema:familyName Nakoryakov
76 schema:givenName V. E.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440273776.13
78 rdf:type schema:Person
79 sg:pub.10.1038/nphys1340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027891587
80 https://doi.org/10.1038/nphys1340
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034799689
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/j.ijsolstr.2012.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049338136
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/j.ijthermalsci.2014.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017275501
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physrevlett.98.134502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833793
89 rdf:type schema:CreativeWork
90 https://doi.org/10.2478/v10178-012-0071-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103920319
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.27736.37 schema:alternateName Tomsk Polytechnic University
93 schema:name National Research Tomsk Polytechnical University, 634050, Tomsk, Russia
94 rdf:type schema:Organization
95 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
96 schema:name Kutateladze Institute of Thermal Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...