Quantification of Hydrogen in Natural Diamond by Secondary Ion Mass Spectrometry (SIMS) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-09

AUTHORS

F. V. Kaminsky, S. N. Shilobreeva, B. Ya. Ber, D. Yu. Kazantsev

ABSTRACT

The volumetric concentration of hydrogen in two Brazilian diamonds is determined using secondary ion mass spectrometry and implantation of hydrogen into an external standard sample (with a dose of 1 × 16 at/cm2 and energy of 120 KeV). The diamonds studied differ noticeably in their intensities of IR-active hydrogen from 0 to 1.5 cm–1 according to the analyses of their IR spectra. The results demonstrate that for both samples studied, the volumetric concentration of hydrogen does not exceed the reached detectable level of (1–2) × 1018 at/cm3 or 1.7–3.3 at. ppm; i.e., it is lower by an order of magnitude than in the early chemical analysis and by 2–3 orders of magnitude lower than the results of the ion-beam spectrochemical, nuclear-physical, and ERDA analyses. Only a part of the hydrogen forms optically active impurities in diamond crystals and can be determined by spectral methods. More... »

PAGES

699-703

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1028334x20090093

DOI

http://dx.doi.org/10.1134/s1028334x20090093

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1131928530


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaminsky", 
        "givenName": "F. V.", 
        "id": "sg:person.07663074101.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07663074101.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shilobreeva", 
        "givenName": "S. N.", 
        "id": "sg:person.015437207131.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437207131.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ber", 
        "givenName": "B. Ya.", 
        "id": "sg:person.013474671571.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013474671571.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazantsev", 
        "givenName": "D. Yu.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00553924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022442552", 
          "https://doi.org/10.1007/bf00553924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s106193481714012x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101320953", 
          "https://doi.org/10.1134/s106193481714012x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-09", 
    "datePublishedReg": "2020-09-01", 
    "description": "The volumetric concentration of hydrogen in two Brazilian diamonds is determined using secondary ion mass spectrometry and implantation of hydrogen into an external standard sample (with a dose of 1 \u00d7 16 at/cm2 and energy of 120 KeV). The diamonds studied differ noticeably in their intensities of IR-active hydrogen from 0 to 1.5 cm\u20131 according to the analyses of their IR spectra. The results demonstrate that for both samples studied, the volumetric concentration of hydrogen does not exceed the reached detectable level of (1\u20132) \u00d7 1018 at/cm3 or 1.7\u20133.3 at. ppm; i.e., it is lower by an order of magnitude than in the early chemical analysis and by 2\u20133 orders of magnitude lower than the results of the ion-beam spectrochemical, nuclear-physical, and ERDA analyses. Only a part of the hydrogen forms optically active impurities in diamond crystals and can be determined by spectral methods.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1028334x20090093", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136549", 
        "issn": [
          "1028-334X", 
          "1531-8354"
        ], 
        "name": "Doklady Earth Sciences", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "494"
      }
    ], 
    "keywords": [
      "secondary ion mass spectrometry", 
      "ion mass spectrometry", 
      "mass spectrometry", 
      "IR-active hydrogen", 
      "earlier chemical analysis", 
      "quantification of hydrogen", 
      "IR spectra", 
      "hydrogen form", 
      "orders of magnitude", 
      "chemical analysis", 
      "hydrogen", 
      "spectrometry", 
      "ERDA analysis", 
      "active impurities", 
      "standard samples", 
      "implantation of hydrogen", 
      "spectral method", 
      "natural diamond", 
      "diamond crystals", 
      "crystals", 
      "concentration", 
      "impurities", 
      "diamond", 
      "spectra", 
      "cm3", 
      "samples", 
      "quantification", 
      "volumetric concentration", 
      "Brazilian diamonds", 
      "magnitude", 
      "analysis", 
      "intensity", 
      "order", 
      "method", 
      "form", 
      "results", 
      "detectable levels", 
      "implantation", 
      "part", 
      "levels"
    ], 
    "name": "Quantification of Hydrogen in Natural Diamond by Secondary Ion Mass Spectrometry (SIMS)", 
    "pagination": "699-703", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1131928530"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1028334x20090093"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1028334x20090093", 
      "https://app.dimensions.ai/details/publication/pub.1131928530"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_866.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1028334x20090093"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1028334x20090093'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1028334x20090093'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1028334x20090093'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1028334x20090093'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      22 PREDICATES      67 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1028334x20090093 schema:about anzsrc-for:04
2 schema:author N7bf7f043fa5f4baaa9fd692209509f16
3 schema:citation sg:pub.10.1007/bf00553924
4 sg:pub.10.1134/s106193481714012x
5 schema:datePublished 2020-09
6 schema:datePublishedReg 2020-09-01
7 schema:description The volumetric concentration of hydrogen in two Brazilian diamonds is determined using secondary ion mass spectrometry and implantation of hydrogen into an external standard sample (with a dose of 1 × 16 at/cm2 and energy of 120 KeV). The diamonds studied differ noticeably in their intensities of IR-active hydrogen from 0 to 1.5 cm–1 according to the analyses of their IR spectra. The results demonstrate that for both samples studied, the volumetric concentration of hydrogen does not exceed the reached detectable level of (1–2) × 1018 at/cm3 or 1.7–3.3 at. ppm; i.e., it is lower by an order of magnitude than in the early chemical analysis and by 2–3 orders of magnitude lower than the results of the ion-beam spectrochemical, nuclear-physical, and ERDA analyses. Only a part of the hydrogen forms optically active impurities in diamond crystals and can be determined by spectral methods.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N453577bc45394b40a7b1750fa9ca07d9
12 Nd36874de3eae49cfad20f94b4244abe0
13 sg:journal.1136549
14 schema:keywords Brazilian diamonds
15 ERDA analysis
16 IR spectra
17 IR-active hydrogen
18 active impurities
19 analysis
20 chemical analysis
21 cm3
22 concentration
23 crystals
24 detectable levels
25 diamond
26 diamond crystals
27 earlier chemical analysis
28 form
29 hydrogen
30 hydrogen form
31 implantation
32 implantation of hydrogen
33 impurities
34 intensity
35 ion mass spectrometry
36 levels
37 magnitude
38 mass spectrometry
39 method
40 natural diamond
41 order
42 orders of magnitude
43 part
44 quantification
45 quantification of hydrogen
46 results
47 samples
48 secondary ion mass spectrometry
49 spectra
50 spectral method
51 spectrometry
52 standard samples
53 volumetric concentration
54 schema:name Quantification of Hydrogen in Natural Diamond by Secondary Ion Mass Spectrometry (SIMS)
55 schema:pagination 699-703
56 schema:productId N0ad5dbc4af214f59923e320f0c4570c3
57 Nd125f55aa3984152982fe95329618c07
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131928530
59 https://doi.org/10.1134/s1028334x20090093
60 schema:sdDatePublished 2022-05-10T10:27
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N569aef941bb44ba781e34e65c8f016fc
63 schema:url https://doi.org/10.1134/s1028334x20090093
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0ad5dbc4af214f59923e320f0c4570c3 schema:name doi
68 schema:value 10.1134/s1028334x20090093
69 rdf:type schema:PropertyValue
70 N1f21c7020533448f996daa16dea1553b rdf:first sg:person.015437207131.67
71 rdf:rest Nf00b1a32b3a34bbb84d6b1ffc76f09f2
72 N29b5a34612874a1a894c95199fbd1b6c rdf:first Nc1f607c8489c4f01a9e5b19bd0d07891
73 rdf:rest rdf:nil
74 N453577bc45394b40a7b1750fa9ca07d9 schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 N569aef941bb44ba781e34e65c8f016fc schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N7bf7f043fa5f4baaa9fd692209509f16 rdf:first sg:person.07663074101.14
79 rdf:rest N1f21c7020533448f996daa16dea1553b
80 Nc1f607c8489c4f01a9e5b19bd0d07891 schema:affiliation grid-institutes:grid.423485.c
81 schema:familyName Kazantsev
82 schema:givenName D. Yu.
83 rdf:type schema:Person
84 Nd125f55aa3984152982fe95329618c07 schema:name dimensions_id
85 schema:value pub.1131928530
86 rdf:type schema:PropertyValue
87 Nd36874de3eae49cfad20f94b4244abe0 schema:volumeNumber 494
88 rdf:type schema:PublicationVolume
89 Nf00b1a32b3a34bbb84d6b1ffc76f09f2 rdf:first sg:person.013474671571.59
90 rdf:rest N29b5a34612874a1a894c95199fbd1b6c
91 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
92 schema:name Earth Sciences
93 rdf:type schema:DefinedTerm
94 sg:journal.1136549 schema:issn 1028-334X
95 1531-8354
96 schema:name Doklady Earth Sciences
97 schema:publisher Pleiades Publishing
98 rdf:type schema:Periodical
99 sg:person.013474671571.59 schema:affiliation grid-institutes:grid.423485.c
100 schema:familyName Ber
101 schema:givenName B. Ya.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013474671571.59
103 rdf:type schema:Person
104 sg:person.015437207131.67 schema:affiliation grid-institutes:grid.4886.2
105 schema:familyName Shilobreeva
106 schema:givenName S. N.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437207131.67
108 rdf:type schema:Person
109 sg:person.07663074101.14 schema:affiliation grid-institutes:grid.4886.2
110 schema:familyName Kaminsky
111 schema:givenName F. V.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07663074101.14
113 rdf:type schema:Person
114 sg:pub.10.1007/bf00553924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022442552
115 https://doi.org/10.1007/bf00553924
116 rdf:type schema:CreativeWork
117 sg:pub.10.1134/s106193481714012x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101320953
118 https://doi.org/10.1134/s106193481714012x
119 rdf:type schema:CreativeWork
120 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
121 schema:name Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
122 rdf:type schema:Organization
123 grid-institutes:grid.4886.2 schema:alternateName Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia
124 schema:name Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...