Statistical modeling of daily maximum surface ozone concentrations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-08

AUTHORS

A. M. Zvyagintsev, I. B. Belikov, N. F. Elanskii, G. Kakadzhanova, I. N. Kuznetsova, O. A. Tarasova, I. Yu. Shalygina

ABSTRACT

A statistical model of the daily maximum surface ozone concentrations is suggested based on correlations with its predictors. Among the predictors are the temperature; relative humidity; mean wind speed in the planetary boundary layer; concentrations of other trace gases; and the “meteorological pollution potential,” which can characterize adverse (for atmospheric dispersion) meteorological conditions. The statistical model is suitable for surface ozone forecasting; it uses current meteorological parameters, as well as their forecasted values. The most significant predictors of the surface ozone in the Moscow region are the meteorological pollution potential and anomalies (deviations from the norms) of the temperature, relative humidity, and surface ozone on the previous day. The model was tested using the data obtained for the Moscow region and some German stations. Such a model is better than the “climate” and “inertial” models and can ensure a determination coefficient of the surface ozone anomalies of about 50%. More... »

PAGES

284-292

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s102485601004007x

DOI

http://dx.doi.org/10.1134/s102485601004007x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017042308


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Roshydromet", 
          "id": "https://www.grid.ac/institutes/grid.433404.4", 
          "name": [
            "Central Aerological Observatory, Pervomaiskaya ul. 3, 141700, Dolgoprudnyi, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zvyagintsev", 
        "givenName": "A. M.", 
        "id": "sg:person.07503617640.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07503617640.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, 109017, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belikov", 
        "givenName": "I. B.", 
        "id": "sg:person.015274652731.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015274652731.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, 109017, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elanskii", 
        "givenName": "N. F.", 
        "id": "sg:person.010233634375.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010233634375.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Roshydromet", 
          "id": "https://www.grid.ac/institutes/grid.433404.4", 
          "name": [
            "Central Aerological Observatory, Pervomaiskaya ul. 3, 141700, Dolgoprudnyi, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kakadzhanova", 
        "givenName": "G.", 
        "id": "sg:person.011553230457.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011553230457.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hydrometeorological Center of Russia, B. Predtechenskii per. 9-13, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuznetsova", 
        "givenName": "I. N.", 
        "id": "sg:person.015455205355.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455205355.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Roshydromet", 
          "id": "https://www.grid.ac/institutes/grid.433404.4", 
          "name": [
            "Central Aerological Observatory, Pervomaiskaya ul. 3, 141700, Dolgoprudnyi, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarasova", 
        "givenName": "O. A.", 
        "id": "sg:person.012512461216.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512461216.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hydrometeorological Center of Russia, B. Predtechenskii per. 9-13, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shalygina", 
        "givenName": "I. Yu.", 
        "id": "sg:person.016013153025.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016013153025.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.5194/acp-3-941-2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000026913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-3-941-2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000026913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-1686(91)90262-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006002441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-1686(91)90262-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006002441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1982)021<1662:aopmvt>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006785933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(00)00466-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020810688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acpd-5-9003-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025296214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acpd-5-9003-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025296214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(98)00345-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036039504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10473289.1996.10467439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039033496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-9-2695-2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042878050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2004.09.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044234765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2006.07.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052748143"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-08", 
    "datePublishedReg": "2010-08-01", 
    "description": "A statistical model of the daily maximum surface ozone concentrations is suggested based on correlations with its predictors. Among the predictors are the temperature; relative humidity; mean wind speed in the planetary boundary layer; concentrations of other trace gases; and the \u201cmeteorological pollution potential,\u201d which can characterize adverse (for atmospheric dispersion) meteorological conditions. The statistical model is suitable for surface ozone forecasting; it uses current meteorological parameters, as well as their forecasted values. The most significant predictors of the surface ozone in the Moscow region are the meteorological pollution potential and anomalies (deviations from the norms) of the temperature, relative humidity, and surface ozone on the previous day. The model was tested using the data obtained for the Moscow region and some German stations. Such a model is better than the \u201cclimate\u201d and \u201cinertial\u201d models and can ensure a determination coefficient of the surface ozone anomalies of about 50%.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s102485601004007x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136100", 
        "issn": [
          "1024-8560", 
          "2070-0393"
        ], 
        "name": "Atmospheric and Oceanic Optics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Statistical modeling of daily maximum surface ozone concentrations", 
    "pagination": "284-292", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "513245a7e31eaf472bca76ee30472e3d023da3e3d9e4caa6e03623947a058736"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s102485601004007x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017042308"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s102485601004007x", 
      "https://app.dimensions.ai/details/publication/pub.1017042308"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77557_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S102485601004007X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s102485601004007x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s102485601004007x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s102485601004007x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s102485601004007x'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s102485601004007x schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N214ca47411b54fa4acc2fea1abc904f8
4 schema:citation https://doi.org/10.1016/0960-1686(91)90262-6
5 https://doi.org/10.1016/j.atmosenv.2004.09.070
6 https://doi.org/10.1016/j.atmosenv.2006.07.039
7 https://doi.org/10.1016/s1352-2310(00)00466-0
8 https://doi.org/10.1016/s1352-2310(98)00345-8
9 https://doi.org/10.1080/10473289.1996.10467439
10 https://doi.org/10.1175/1520-0450(1982)021<1662:aopmvt>2.0.co;2
11 https://doi.org/10.5194/acp-3-941-2003
12 https://doi.org/10.5194/acp-9-2695-2009
13 https://doi.org/10.5194/acpd-5-9003-2005
14 schema:datePublished 2010-08
15 schema:datePublishedReg 2010-08-01
16 schema:description A statistical model of the daily maximum surface ozone concentrations is suggested based on correlations with its predictors. Among the predictors are the temperature; relative humidity; mean wind speed in the planetary boundary layer; concentrations of other trace gases; and the “meteorological pollution potential,” which can characterize adverse (for atmospheric dispersion) meteorological conditions. The statistical model is suitable for surface ozone forecasting; it uses current meteorological parameters, as well as their forecasted values. The most significant predictors of the surface ozone in the Moscow region are the meteorological pollution potential and anomalies (deviations from the norms) of the temperature, relative humidity, and surface ozone on the previous day. The model was tested using the data obtained for the Moscow region and some German stations. Such a model is better than the “climate” and “inertial” models and can ensure a determination coefficient of the surface ozone anomalies of about 50%.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N7ae9501b6ebd497fb258b98b60ae3b16
21 Nec368e47e2eb4edcb135bd5e07bec633
22 sg:journal.1136100
23 schema:name Statistical modeling of daily maximum surface ozone concentrations
24 schema:pagination 284-292
25 schema:productId N08d10f30a2c140a7b4a8601db954f8bb
26 N5160dca9f6b6406e8a7cd9dc80342df8
27 Nd7eb33796b494b178fa2852e014d4557
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017042308
29 https://doi.org/10.1134/s102485601004007x
30 schema:sdDatePublished 2019-04-11T10:49
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Na536a3c8741e4c1e97103bf14b0b92cc
33 schema:url http://link.springer.com/10.1134/S102485601004007X
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N08d10f30a2c140a7b4a8601db954f8bb schema:name readcube_id
38 schema:value 513245a7e31eaf472bca76ee30472e3d023da3e3d9e4caa6e03623947a058736
39 rdf:type schema:PropertyValue
40 N214ca47411b54fa4acc2fea1abc904f8 rdf:first sg:person.07503617640.61
41 rdf:rest N79fadeb72c134cc4b08c6478a4e14415
42 N2d581492c78845ffb8c6b72da8d94b92 schema:name Hydrometeorological Center of Russia, B. Predtechenskii per. 9-13, 123242, Moscow, Russia
43 rdf:type schema:Organization
44 N5160dca9f6b6406e8a7cd9dc80342df8 schema:name doi
45 schema:value 10.1134/s102485601004007x
46 rdf:type schema:PropertyValue
47 N6340abe365bd4e8aa308eaae8c468834 rdf:first sg:person.012512461216.79
48 rdf:rest N73b58250fda64ef79f0abb5c9cfa4b5c
49 N73b58250fda64ef79f0abb5c9cfa4b5c rdf:first sg:person.016013153025.09
50 rdf:rest rdf:nil
51 N758c61b5896c48d78beb76fef8730555 rdf:first sg:person.015455205355.88
52 rdf:rest N6340abe365bd4e8aa308eaae8c468834
53 N79fadeb72c134cc4b08c6478a4e14415 rdf:first sg:person.015274652731.85
54 rdf:rest Nc18f5d63cf1148b0bfc59703921e449e
55 N7ae9501b6ebd497fb258b98b60ae3b16 schema:issueNumber 4
56 rdf:type schema:PublicationIssue
57 Na536a3c8741e4c1e97103bf14b0b92cc schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nb77852fb36234cd9b87892dc6b32d11d rdf:first sg:person.011553230457.54
60 rdf:rest N758c61b5896c48d78beb76fef8730555
61 Nc18f5d63cf1148b0bfc59703921e449e rdf:first sg:person.010233634375.18
62 rdf:rest Nb77852fb36234cd9b87892dc6b32d11d
63 Nd7eb33796b494b178fa2852e014d4557 schema:name dimensions_id
64 schema:value pub.1017042308
65 rdf:type schema:PropertyValue
66 Ndea07cd099854cc49bd4e2ee5cc5c436 schema:name Hydrometeorological Center of Russia, B. Predtechenskii per. 9-13, 123242, Moscow, Russia
67 rdf:type schema:Organization
68 Nec368e47e2eb4edcb135bd5e07bec633 schema:volumeNumber 23
69 rdf:type schema:PublicationVolume
70 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
71 schema:name Earth Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
74 schema:name Atmospheric Sciences
75 rdf:type schema:DefinedTerm
76 sg:journal.1136100 schema:issn 1024-8560
77 2070-0393
78 schema:name Atmospheric and Oceanic Optics
79 rdf:type schema:Periodical
80 sg:person.010233634375.18 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
81 schema:familyName Elanskii
82 schema:givenName N. F.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010233634375.18
84 rdf:type schema:Person
85 sg:person.011553230457.54 schema:affiliation https://www.grid.ac/institutes/grid.433404.4
86 schema:familyName Kakadzhanova
87 schema:givenName G.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011553230457.54
89 rdf:type schema:Person
90 sg:person.012512461216.79 schema:affiliation https://www.grid.ac/institutes/grid.433404.4
91 schema:familyName Tarasova
92 schema:givenName O. A.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512461216.79
94 rdf:type schema:Person
95 sg:person.015274652731.85 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
96 schema:familyName Belikov
97 schema:givenName I. B.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015274652731.85
99 rdf:type schema:Person
100 sg:person.015455205355.88 schema:affiliation Ndea07cd099854cc49bd4e2ee5cc5c436
101 schema:familyName Kuznetsova
102 schema:givenName I. N.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455205355.88
104 rdf:type schema:Person
105 sg:person.016013153025.09 schema:affiliation N2d581492c78845ffb8c6b72da8d94b92
106 schema:familyName Shalygina
107 schema:givenName I. Yu.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016013153025.09
109 rdf:type schema:Person
110 sg:person.07503617640.61 schema:affiliation https://www.grid.ac/institutes/grid.433404.4
111 schema:familyName Zvyagintsev
112 schema:givenName A. M.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07503617640.61
114 rdf:type schema:Person
115 https://doi.org/10.1016/0960-1686(91)90262-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006002441
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.atmosenv.2004.09.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044234765
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.atmosenv.2006.07.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052748143
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s1352-2310(00)00466-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020810688
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s1352-2310(98)00345-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036039504
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1080/10473289.1996.10467439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039033496
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1175/1520-0450(1982)021<1662:aopmvt>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006785933
128 rdf:type schema:CreativeWork
129 https://doi.org/10.5194/acp-3-941-2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000026913
130 rdf:type schema:CreativeWork
131 https://doi.org/10.5194/acp-9-2695-2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042878050
132 rdf:type schema:CreativeWork
133 https://doi.org/10.5194/acpd-5-9003-2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025296214
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.433404.4 schema:alternateName Roshydromet
136 schema:name Central Aerological Observatory, Pervomaiskaya ul. 3, 141700, Dolgoprudnyi, Moscow region, Russia
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
139 schema:name Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, 109017, Moscow, Russia
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...