The effect of monoethanolamine on conductivity and efficiency of electrodialysis of acid and salt solutions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-04

AUTHORS

E. G. Novitskii, V. P. Vasilevskii, E. A. Grushevenko, A. V. Volkov, V. I. Vasil’eva

ABSTRACT

Experimental studies of the specific conductivity (SC) are carried out for aqueous solutions of organic and inorganic acids and salts including those containing different amounts of monoethanolamine (MEA), which model the absorption solutions used in purification of gas mixtures from carbon dioxide and containing heatstable salts (HSS). It is shown that the addition of MEA to binary aqueous electrolyte solutions gives rise to changes in the SC: in the MEA concentration range from 0 to ∼1.5 M, the SC of the resulting ternary solutions increases but decreases again with the further increase in MEA concentration. This behavior of SC is typical also of aqueous binary amine solutions. It is shown that in the presence of MEA, the quantitative removal of dissolved acids and salts proceeds faster with the simultaneous increase in the specific energy consumption by a factor of 7–9 (up to 85.7–93.6 kJ/dm3). It is assumed that the reason for the decrease in SC and the enhancement of energy consumption at electrodialysis of mixed solutions is the probable existence of monoethanolamine both as free solvated ions and neutral molecules and as self-assembled associated structures (ion pairs and more complex particles) which involve also the ions of salts dissolved in amine-containing solutions. More... »

PAGES

391-397

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1023193517040103

DOI

http://dx.doi.org/10.1134/s1023193517040103

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085138271


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Novitskii", 
        "givenName": "E. G.", 
        "id": "sg:person.014270474463.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270474463.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasilevskii", 
        "givenName": "V. P.", 
        "id": "sg:person.012346413177.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346413177.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grushevenko", 
        "givenName": "E. A.", 
        "id": "sg:person.011755064027.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755064027.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volkov", 
        "givenName": "A. V.", 
        "id": "sg:person.012655354565.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012655354565.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Voronezh State University", 
          "id": "https://www.grid.ac/institutes/grid.20567.36", 
          "name": [
            "Voronezh State University, 394036, Voronezh, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasil\u2019eva", 
        "givenName": "V. I.", 
        "id": "sg:person.01332521713.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332521713.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijggc.2012.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001173000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cherd.2010.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004548607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544114080118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008148231", 
          "https://doi.org/10.1134/s0965544114080118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.egypro.2009.01.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022420792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2014.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028032475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1023193515010048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029153598", 
          "https://doi.org/10.1134/s1023193515010048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijggc.2015.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033608739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie200686q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033703268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2009.10.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041956520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.egypro.2014.11.668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046382010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.egypro.2011.01.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049973540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.egypro.2014.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051655489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2010.04.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053144253"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04", 
    "datePublishedReg": "2017-04-01", 
    "description": "Experimental studies of the specific conductivity (SC) are carried out for aqueous solutions of organic and inorganic acids and salts including those containing different amounts of monoethanolamine (MEA), which model the absorption solutions used in purification of gas mixtures from carbon dioxide and containing heatstable salts (HSS). It is shown that the addition of MEA to binary aqueous electrolyte solutions gives rise to changes in the SC: in the MEA concentration range from 0 to \u223c1.5 M, the SC of the resulting ternary solutions increases but decreases again with the further increase in MEA concentration. This behavior of SC is typical also of aqueous binary amine solutions. It is shown that in the presence of MEA, the quantitative removal of dissolved acids and salts proceeds faster with the simultaneous increase in the specific energy consumption by a factor of 7\u20139 (up to 85.7\u201393.6 kJ/dm3). It is assumed that the reason for the decrease in SC and the enhancement of energy consumption at electrodialysis of mixed solutions is the probable existence of monoethanolamine both as free solvated ions and neutral molecules and as self-assembled associated structures (ion pairs and more complex particles) which involve also the ions of salts dissolved in amine-containing solutions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1023193517040103", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135994", 
        "issn": [
          "1023-1935", 
          "1608-3342"
        ], 
        "name": "Russian Journal of Electrochemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "The effect of monoethanolamine on conductivity and efficiency of electrodialysis of acid and salt solutions", 
    "pagination": "391-397", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "facaed5c3a45426e5382181eb3f530cb8c077ce9ad2bee3be36ff3b598172a52"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1023193517040103"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085138271"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1023193517040103", 
      "https://app.dimensions.ai/details/publication/pub.1085138271"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S1023193517040103"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1023193517040103'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1023193517040103'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1023193517040103'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1023193517040103'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1023193517040103 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N20ccdac7595b49d0b5669abcdfb0b090
4 schema:citation sg:pub.10.1134/s0965544114080118
5 sg:pub.10.1134/s1023193515010048
6 https://doi.org/10.1016/j.cherd.2010.11.005
7 https://doi.org/10.1016/j.desal.2010.04.069
8 https://doi.org/10.1016/j.desal.2014.01.008
9 https://doi.org/10.1016/j.egypro.2009.01.045
10 https://doi.org/10.1016/j.egypro.2011.01.077
11 https://doi.org/10.1016/j.egypro.2014.07.016
12 https://doi.org/10.1016/j.egypro.2014.11.668
13 https://doi.org/10.1016/j.ijggc.2012.07.005
14 https://doi.org/10.1016/j.ijggc.2015.09.015
15 https://doi.org/10.1016/j.memsci.2009.10.041
16 https://doi.org/10.1021/ie200686q
17 schema:datePublished 2017-04
18 schema:datePublishedReg 2017-04-01
19 schema:description Experimental studies of the specific conductivity (SC) are carried out for aqueous solutions of organic and inorganic acids and salts including those containing different amounts of monoethanolamine (MEA), which model the absorption solutions used in purification of gas mixtures from carbon dioxide and containing heatstable salts (HSS). It is shown that the addition of MEA to binary aqueous electrolyte solutions gives rise to changes in the SC: in the MEA concentration range from 0 to ∼1.5 M, the SC of the resulting ternary solutions increases but decreases again with the further increase in MEA concentration. This behavior of SC is typical also of aqueous binary amine solutions. It is shown that in the presence of MEA, the quantitative removal of dissolved acids and salts proceeds faster with the simultaneous increase in the specific energy consumption by a factor of 7–9 (up to 85.7–93.6 kJ/dm3). It is assumed that the reason for the decrease in SC and the enhancement of energy consumption at electrodialysis of mixed solutions is the probable existence of monoethanolamine both as free solvated ions and neutral molecules and as self-assembled associated structures (ion pairs and more complex particles) which involve also the ions of salts dissolved in amine-containing solutions.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N5dcde3c5aea749d7b1d0bfd3ee966369
24 Na4a5b4dc9a894bb5bf040438e728ab6b
25 sg:journal.1135994
26 schema:name The effect of monoethanolamine on conductivity and efficiency of electrodialysis of acid and salt solutions
27 schema:pagination 391-397
28 schema:productId N44cbd4b0c1d64b92be0e147553e5221d
29 N5c1104f647734ef29c77796ebc3968ec
30 N63620efea191406eb9bb9c618ef2e41d
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085138271
32 https://doi.org/10.1134/s1023193517040103
33 schema:sdDatePublished 2019-04-10T20:40
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N4dacdbfedcb240308f18fecb8309e6c7
36 schema:url http://link.springer.com/10.1134/S1023193517040103
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N184d370914fe4d1b8711c5ec25eaa2cc rdf:first sg:person.011755064027.24
41 rdf:rest Nbe9e4abd0ab94000b2744b5b9fc8fb53
42 N20ccdac7595b49d0b5669abcdfb0b090 rdf:first sg:person.014270474463.48
43 rdf:rest N9a90a636a7214494956c0963df474919
44 N44cbd4b0c1d64b92be0e147553e5221d schema:name readcube_id
45 schema:value facaed5c3a45426e5382181eb3f530cb8c077ce9ad2bee3be36ff3b598172a52
46 rdf:type schema:PropertyValue
47 N4dacdbfedcb240308f18fecb8309e6c7 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N5c1104f647734ef29c77796ebc3968ec schema:name dimensions_id
50 schema:value pub.1085138271
51 rdf:type schema:PropertyValue
52 N5dcde3c5aea749d7b1d0bfd3ee966369 schema:volumeNumber 53
53 rdf:type schema:PublicationVolume
54 N63620efea191406eb9bb9c618ef2e41d schema:name doi
55 schema:value 10.1134/s1023193517040103
56 rdf:type schema:PropertyValue
57 N8d7f51b2562c40fca54c02f66eb09178 rdf:first sg:person.01332521713.40
58 rdf:rest rdf:nil
59 N9a90a636a7214494956c0963df474919 rdf:first sg:person.012346413177.45
60 rdf:rest N184d370914fe4d1b8711c5ec25eaa2cc
61 Na4a5b4dc9a894bb5bf040438e728ab6b schema:issueNumber 4
62 rdf:type schema:PublicationIssue
63 Nbe9e4abd0ab94000b2744b5b9fc8fb53 rdf:first sg:person.012655354565.76
64 rdf:rest N8d7f51b2562c40fca54c02f66eb09178
65 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
66 schema:name Chemical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
69 schema:name Physical Chemistry (incl. Structural)
70 rdf:type schema:DefinedTerm
71 sg:journal.1135994 schema:issn 1023-1935
72 1608-3342
73 schema:name Russian Journal of Electrochemistry
74 rdf:type schema:Periodical
75 sg:person.011755064027.24 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
76 schema:familyName Grushevenko
77 schema:givenName E. A.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755064027.24
79 rdf:type schema:Person
80 sg:person.012346413177.45 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
81 schema:familyName Vasilevskii
82 schema:givenName V. P.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346413177.45
84 rdf:type schema:Person
85 sg:person.012655354565.76 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
86 schema:familyName Volkov
87 schema:givenName A. V.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012655354565.76
89 rdf:type schema:Person
90 sg:person.01332521713.40 schema:affiliation https://www.grid.ac/institutes/grid.20567.36
91 schema:familyName Vasil’eva
92 schema:givenName V. I.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332521713.40
94 rdf:type schema:Person
95 sg:person.014270474463.48 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
96 schema:familyName Novitskii
97 schema:givenName E. G.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270474463.48
99 rdf:type schema:Person
100 sg:pub.10.1134/s0965544114080118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008148231
101 https://doi.org/10.1134/s0965544114080118
102 rdf:type schema:CreativeWork
103 sg:pub.10.1134/s1023193515010048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029153598
104 https://doi.org/10.1134/s1023193515010048
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.cherd.2010.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004548607
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.desal.2010.04.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053144253
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.desal.2014.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028032475
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.egypro.2009.01.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022420792
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.egypro.2011.01.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049973540
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.egypro.2014.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051655489
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.egypro.2014.11.668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046382010
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.ijggc.2012.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001173000
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.ijggc.2015.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033608739
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.memsci.2009.10.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041956520
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/ie200686q schema:sameAs https://app.dimensions.ai/details/publication/pub.1033703268
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.20567.36 schema:alternateName Voronezh State University
129 schema:name Voronezh State University, 394036, Voronezh, Russia
130 rdf:type schema:Organization
131 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
132 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...