New solid electrolytes of the pyrochlore family View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-01-25

AUTHORS

A. V. Shlyakhtina, L. G. Shcherbakova

ABSTRACT

The class of oxygen-ion-conducting rare-earth pyrochlores has been considerably extended. New solid electrolytes, Ln2Ti2O7 (Ln = Dy-Lu) and Ln2Hf2O7 (Ln = Eu, Gd) pyrochlores, are intrinsic ionic conductors at elevated temperatures, as are the well known Ln2Zr2O7 (Ln = Sm-Gd) zirconates, which suggests that oxygen ion conduction in the rare-earth pyrochlore family has a general character. The thermodynamic order-disorder transitions that yield a PII cation- and anion-disordered pyrochlore phase possessing high oxygen ion conductivity occur throughout the rare-earth pyrochlore family: Ln2M2O7 (Ln = Sm-Lu; M = Ti, Zr, Hf). The composition-structure-oxygen-ionic conductivity relationship is analyzed for Ln2(M2 − xLnx)O7 − δ (Ln = Sm-Lu; M = Ti, Zr, Hf) with x from 0 to 0.81. More... »

PAGES

1-25

References to SciGraph publications

  • 2006-05. Structure and electrical conductivity of Ln2+xHf2−xO7−x/2 (Ln = Sm-Tb; x = 0, 0.096) in INORGANIC MATERIALS
  • 2004-01. Order–Disorder Transformations in Ln2Ti2O7(Ln = Lu, Yb, Tm, Gd) in INORGANIC MATERIALS
  • 2005-08. Ionic Conductivity of Ln2 + xZr2 − xO7 − x/2 (Ln = Sm-Gd) Solid Solutions in INORGANIC MATERIALS
  • 2005-04. Influence of structural defects on the electrical conductivity of (Yb1 − xScx)2Ti2O7 (x=0, 0.09, 0.3) in INORGANIC MATERIALS
  • 2005-03. Ionic conductivity in the Lu2O3-TiO2 system in INORGANIC MATERIALS
  • 2003-05. Structural Order–Disorder Transitions in Ln2Ti2O7 (Ln = Lu, Gd) in RUSSIAN JOURNAL OF ELECTROCHEMISTRY
  • 2004-12. New ionic conductors Ln2 + xTi2 − xO7 − x /2 (Ln = Dy−Lu, x = 0.132) in INORGANIC MATERIALS
  • 2009-05-09. Study of bulk and grain-boundary conductivity of Ln2+xHf2−xO7−δ (Ln = Sm-Gd; x = 0, 0.096) pyrochlores in JOURNAL OF ELECTROCERAMICS
  • 1983-01. Predictive character of solid state chemistry: Relation between structure, chemical bonding and physical properties of solids in JOURNAL OF CHEMICAL SCIENCES
  • 2009-01. Neutron diffraction investigation of the evolution of the crystal structure of oxygen-conducting solid solutions (Yb1 − xCax)2Ti2O7 (x = 0, 0.05, 0.10) in CRYSTALLOGRAPHY REPORTS
  • 2000-05. Research on the electrochemistry of oxygen ion conductors in the former Soviet Union in JOURNAL OF SOLID STATE ELECTROCHEMISTRY
  • 2005-03. Ionic conduction of a high-temperature modification of Lu2Ti2O7 in RUSSIAN JOURNAL OF ELECTROCHEMISTRY
  • 2000-04. Designing fast oxide-ion conductors based on La2Mo2O9 in NATURE
  • 2004-12. High-temperature phase transition of Tm2Ti2O7 in INORGANIC MATERIALS
  • 2006-05. Effect of heterovalent substitution on the electrical conductivity of (Yb1−xMx)2Ti2O7 (M = Ca, Ba; x = 0, 0.05, 0.1) in INORGANIC MATERIALS
  • 2008-03. Synthesis and high-temperature electrical conductivity of Ln2Ti2O7 and LnYTi2O7 (Ln = Dy, Ho) in INORGANIC MATERIALS
  • 2006-04-01. Zero-point entropy in stuffed spin-ice in NATURE PHYSICS
  • 2003-07. Mechanically-Activated Synthesis and Mixed Conductivity of TbMO4−δ (M = Zr, Hf) Ceramics in JOURNAL OF ELECTROCERAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1023193512010144

    DOI

    http://dx.doi.org/10.1134/s1023193512010144

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019351844


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.424930.8", 
              "name": [
                "Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shlyakhtina", 
            "givenName": "A. V.", 
            "id": "sg:person.014604715121.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014604715121.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.424930.8", 
              "name": [
                "Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shcherbakova", 
            "givenName": "L. G.", 
            "id": "sg:person.011156114320.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011156114320.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s0020168506050141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016082924", 
              "https://doi.org/10.1134/s0020168506050141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:jecr.0000011214.18447.4d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026225259", 
              "https://doi.org/10.1023/b:jecr.0000011214.18447.4d"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s002016850605013x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006756462", 
              "https://doi.org/10.1134/s002016850605013x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0020168508030163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026268158", 
              "https://doi.org/10.1134/s0020168508030163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10789-005-0096-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048396926", 
              "https://doi.org/10.1007/s10789-005-0096-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10789-005-0121-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032502309", 
              "https://doi.org/10.1007/s10789-005-0121-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02866766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086232094", 
              "https://doi.org/10.1007/bf02866766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10789-005-0144-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013157105", 
              "https://doi.org/10.1007/s10789-005-0144-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018863784", 
              "https://doi.org/10.1038/nphys270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s100080050202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040082339", 
              "https://doi.org/10.1007/s100080050202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35009069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008103316", 
              "https://doi.org/10.1038/35009069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1023860423219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014226370", 
              "https://doi.org/10.1023/a:1023860423219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10789-005-0017-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006463458", 
              "https://doi.org/10.1007/s10789-005-0017-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:inma.0000012180.80891.72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015320582", 
              "https://doi.org/10.1023/b:inma.0000012180.80891.72"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10832-009-9572-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051900679", 
              "https://doi.org/10.1007/s10832-009-9572-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10789-005-0226-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008910056", 
              "https://doi.org/10.1007/s10789-005-0226-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063774509010052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048540148", 
              "https://doi.org/10.1134/s1063774509010052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11175-005-0060-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022236715", 
              "https://doi.org/10.1007/s11175-005-0060-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-01-25", 
        "datePublishedReg": "2012-01-25", 
        "description": "The class of oxygen-ion-conducting rare-earth pyrochlores has been considerably extended. New solid electrolytes, Ln2Ti2O7 (Ln = Dy-Lu) and Ln2Hf2O7 (Ln = Eu, Gd) pyrochlores, are intrinsic ionic conductors at elevated temperatures, as are the well known Ln2Zr2O7 (Ln = Sm-Gd) zirconates, which suggests that oxygen ion conduction in the rare-earth pyrochlore family has a general character. The thermodynamic order-disorder transitions that yield a PII cation- and anion-disordered pyrochlore phase possessing high oxygen ion conductivity occur throughout the rare-earth pyrochlore family: Ln2M2O7 (Ln = Sm-Lu; M = Ti, Zr, Hf). The composition-structure-oxygen-ionic conductivity relationship is analyzed for Ln2(M2 \u2212 xLnx)O7 \u2212 \u03b4 (Ln = Sm-Lu; M = Ti, Zr, Hf) with x from 0 to 0.81.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s1023193512010144", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135994", 
            "issn": [
              "0424-8570", 
              "1023-1935"
            ], 
            "name": "Russian Journal of Electrochemistry", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "48"
          }
        ], 
        "keywords": [
          "new solid electrolytes", 
          "solid electrolyte", 
          "pyrochlore family", 
          "high oxygen ion conductivity", 
          "oxygen ion conduction", 
          "oxygen ion conductivity", 
          "ion conductivity", 
          "ionic conductors", 
          "ion conduction", 
          "rare-earth pyrochlores", 
          "pyrochlore phase", 
          "electrolyte", 
          "pyrochlore", 
          "order-disorder transition", 
          "conductivity relationship", 
          "elevated temperatures", 
          "Ln2Ti2O7", 
          "cations", 
          "zirconate", 
          "conductivity", 
          "conductors", 
          "temperature", 
          "phase", 
          "transition", 
          "general character", 
          "conduction", 
          "character", 
          "class", 
          "family", 
          "relationship"
        ], 
        "name": "New solid electrolytes of the pyrochlore family", 
        "pagination": "1-25", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019351844"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1023193512010144"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1023193512010144", 
          "https://app.dimensions.ai/details/publication/pub.1019351844"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_585.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s1023193512010144"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1023193512010144'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1023193512010144'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1023193512010144'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1023193512010144'


     

    This table displays all metadata directly associated to this object as RDF triples.

    167 TRIPLES      22 PREDICATES      73 URIs      47 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1023193512010144 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Nffb1fdd1430c48cb8b86babda49291b3
    4 schema:citation sg:pub.10.1007/bf02866766
    5 sg:pub.10.1007/s100080050202
    6 sg:pub.10.1007/s10789-005-0017-0
    7 sg:pub.10.1007/s10789-005-0096-y
    8 sg:pub.10.1007/s10789-005-0121-1
    9 sg:pub.10.1007/s10789-005-0144-7
    10 sg:pub.10.1007/s10789-005-0226-6
    11 sg:pub.10.1007/s10832-009-9572-0
    12 sg:pub.10.1007/s11175-005-0060-9
    13 sg:pub.10.1023/a:1023860423219
    14 sg:pub.10.1023/b:inma.0000012180.80891.72
    15 sg:pub.10.1023/b:jecr.0000011214.18447.4d
    16 sg:pub.10.1038/35009069
    17 sg:pub.10.1038/nphys270
    18 sg:pub.10.1134/s002016850605013x
    19 sg:pub.10.1134/s0020168506050141
    20 sg:pub.10.1134/s0020168508030163
    21 sg:pub.10.1134/s1063774509010052
    22 schema:datePublished 2012-01-25
    23 schema:datePublishedReg 2012-01-25
    24 schema:description The class of oxygen-ion-conducting rare-earth pyrochlores has been considerably extended. New solid electrolytes, Ln2Ti2O7 (Ln = Dy-Lu) and Ln2Hf2O7 (Ln = Eu, Gd) pyrochlores, are intrinsic ionic conductors at elevated temperatures, as are the well known Ln2Zr2O7 (Ln = Sm-Gd) zirconates, which suggests that oxygen ion conduction in the rare-earth pyrochlore family has a general character. The thermodynamic order-disorder transitions that yield a PII cation- and anion-disordered pyrochlore phase possessing high oxygen ion conductivity occur throughout the rare-earth pyrochlore family: Ln2M2O7 (Ln = Sm-Lu; M = Ti, Zr, Hf). The composition-structure-oxygen-ionic conductivity relationship is analyzed for Ln2(M2 − xLnx)O7 − δ (Ln = Sm-Lu; M = Ti, Zr, Hf) with x from 0 to 0.81.
    25 schema:genre article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N27e1166b289e4293ac654be5b5b62f67
    29 N6d12143fb3c04c6aa1f3651073943d3a
    30 sg:journal.1135994
    31 schema:keywords Ln2Ti2O7
    32 cations
    33 character
    34 class
    35 conduction
    36 conductivity
    37 conductivity relationship
    38 conductors
    39 electrolyte
    40 elevated temperatures
    41 family
    42 general character
    43 high oxygen ion conductivity
    44 ion conduction
    45 ion conductivity
    46 ionic conductors
    47 new solid electrolytes
    48 order-disorder transition
    49 oxygen ion conduction
    50 oxygen ion conductivity
    51 phase
    52 pyrochlore
    53 pyrochlore family
    54 pyrochlore phase
    55 rare-earth pyrochlores
    56 relationship
    57 solid electrolyte
    58 temperature
    59 transition
    60 zirconate
    61 schema:name New solid electrolytes of the pyrochlore family
    62 schema:pagination 1-25
    63 schema:productId N05b34b38c1b94836b4d8508e9ceefae0
    64 N8ed490e517924454868a7f9618e0e179
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019351844
    66 https://doi.org/10.1134/s1023193512010144
    67 schema:sdDatePublished 2022-06-01T22:12
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher Ne9ab1747bef0489b9d442d7f3c5369f3
    70 schema:url https://doi.org/10.1134/s1023193512010144
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N05b34b38c1b94836b4d8508e9ceefae0 schema:name dimensions_id
    75 schema:value pub.1019351844
    76 rdf:type schema:PropertyValue
    77 N27e1166b289e4293ac654be5b5b62f67 schema:volumeNumber 48
    78 rdf:type schema:PublicationVolume
    79 N6d12143fb3c04c6aa1f3651073943d3a schema:issueNumber 1
    80 rdf:type schema:PublicationIssue
    81 N8ed490e517924454868a7f9618e0e179 schema:name doi
    82 schema:value 10.1134/s1023193512010144
    83 rdf:type schema:PropertyValue
    84 Nbf953b7cd1724cd9b82b6d7cd72e260e rdf:first sg:person.011156114320.51
    85 rdf:rest rdf:nil
    86 Ne9ab1747bef0489b9d442d7f3c5369f3 schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 Nffb1fdd1430c48cb8b86babda49291b3 rdf:first sg:person.014604715121.80
    89 rdf:rest Nbf953b7cd1724cd9b82b6d7cd72e260e
    90 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Chemical Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Physical Chemistry (incl. Structural)
    95 rdf:type schema:DefinedTerm
    96 sg:journal.1135994 schema:issn 0424-8570
    97 1023-1935
    98 schema:name Russian Journal of Electrochemistry
    99 schema:publisher Pleiades Publishing
    100 rdf:type schema:Periodical
    101 sg:person.011156114320.51 schema:affiliation grid-institutes:grid.424930.8
    102 schema:familyName Shcherbakova
    103 schema:givenName L. G.
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011156114320.51
    105 rdf:type schema:Person
    106 sg:person.014604715121.80 schema:affiliation grid-institutes:grid.424930.8
    107 schema:familyName Shlyakhtina
    108 schema:givenName A. V.
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014604715121.80
    110 rdf:type schema:Person
    111 sg:pub.10.1007/bf02866766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086232094
    112 https://doi.org/10.1007/bf02866766
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s100080050202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040082339
    115 https://doi.org/10.1007/s100080050202
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s10789-005-0017-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006463458
    118 https://doi.org/10.1007/s10789-005-0017-0
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s10789-005-0096-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048396926
    121 https://doi.org/10.1007/s10789-005-0096-y
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s10789-005-0121-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032502309
    124 https://doi.org/10.1007/s10789-005-0121-1
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s10789-005-0144-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013157105
    127 https://doi.org/10.1007/s10789-005-0144-7
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s10789-005-0226-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008910056
    130 https://doi.org/10.1007/s10789-005-0226-6
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s10832-009-9572-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051900679
    133 https://doi.org/10.1007/s10832-009-9572-0
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s11175-005-0060-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022236715
    136 https://doi.org/10.1007/s11175-005-0060-9
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1023/a:1023860423219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014226370
    139 https://doi.org/10.1023/a:1023860423219
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1023/b:inma.0000012180.80891.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015320582
    142 https://doi.org/10.1023/b:inma.0000012180.80891.72
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1023/b:jecr.0000011214.18447.4d schema:sameAs https://app.dimensions.ai/details/publication/pub.1026225259
    145 https://doi.org/10.1023/b:jecr.0000011214.18447.4d
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1038/35009069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008103316
    148 https://doi.org/10.1038/35009069
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1038/nphys270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018863784
    151 https://doi.org/10.1038/nphys270
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1134/s002016850605013x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006756462
    154 https://doi.org/10.1134/s002016850605013x
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1134/s0020168506050141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016082924
    157 https://doi.org/10.1134/s0020168506050141
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1134/s0020168508030163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026268158
    160 https://doi.org/10.1134/s0020168508030163
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1134/s1063774509010052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048540148
    163 https://doi.org/10.1134/s1063774509010052
    164 rdf:type schema:CreativeWork
    165 grid-institutes:grid.424930.8 schema:alternateName Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia
    166 schema:name Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia
    167 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...